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In this supplemental, we provide the following additional
material to the main paper:

A Latent caption extraction details

B Extraction of CLIP region representations

C Mix-and-separate training strategy and Lmask

D Dataset details

(a) MUSIC

(b) SOLOS

(c) AudioSet

E Implementation details

F Additional ablation experiments

(a) weights for LAudio-language and LTri-modal

(b) shared parameters for audio U-Net encoder E
(c) Bounding box experiment

G Discussion of limitations of VAST

H Predicted separated audio samples

A. Latent caption extraction
We provide an illustration of our latent caption extrac-

tion operation (Section 3.1) in Figure 2 and a more detailed
description of the entire operation. As mentioned earlier,
we extract a latent caption from each unlabeled video to
provide pseudo-language supervision. Given a video V , we
begin by encoding its center frame using the CLIP visual
encoder: fV

center = gV (Vcenter). Symmetrically, we seek to
extract a language representation that corresponds to the en-
coded center frame semantically, described next.

The encoding function of the CLIP language transformer
encoder gL provides a mechanism that is amenable to
searching for latent captions that already exist in its learnt

vocabulary, which allows us to freeze its parameters and
leverage its strong visual-semantic alignment with the vi-
sion modality. Instead of using the trained token embed-
dings, we introduce a learnable token parameter p and pass
it into the language encoder gL. We adopt the simple objec-
tive function of maximizing the cosine similarity between
the center frame representation and the output of the lan-
guage encoder, which allows us to update the weights of p
through gradient back-propagation. We formulate the opti-
mization operation mathematically as:

p∗ = argmax
p

sim
(
fV
center, g

L(p)
)

(1)

where sim(x, y) = xT y/(∥x∥∥y∥) and ||.|| denotes the L2

norm operator. We compute the final latent caption of the
video as C∗ = gL(p∗). The latent captions are used in our
proposed alignment objectives to provide pseudo-language
supervision. The search time for parameter p in Equation 1
is about ∼148 seconds per video on a RTX 2080 GPU for
5k iterations.

B. Extraction of spatiotemporal region repre-
sentations from CLIP in Section 3.1

We begin by providing an overview of the 2D attention
pooling layer in the CLIP Resnet visual encoders. By de-
fault, the CLIP visual encoder outputs a global visual repre-
sentation for each input image. While we use the Resnet
variants instead of the transformer-based architectures in
CLIP, the former differs from the standard Resnet archi-
tecture in two ways. First, the CLIP variant contains three
convolutional stems instead of one. Second, and more im-
portantly, the CLIP Resnet variant also replaces the global
average pooling (GAP) layer with a 2D self-attention oper-
ation, which contains the key, query and value projections.
Next, we describe in more detail this self-attention layer and
how we modify it for our task.
CLIP 2D attention pooling. We begin by extracting a set
of spatial region representations from an input image I as:

1



f I = gV (I) ∈ RHW×D, where H , W and D are the down-
sampled height, width and channel dimensions. Recall that
a self-attention operation involves the use of keys, queries,
and values. The CLIP model computes an average im-

age representation as the query vector: f
I
= 1

HW

HW∑
j=1

f I
j ,

where f I
j denotes the j-th row of f I . Then, it computes a

final representation for the entire image as follows:

K = f
I
WK ∈ R1×D

Q = f IWQ ∈ RHW×D

V = f IWV ∈ RHW×D

(2)

where WK , WQ and WV are the key, query and value pro-
jection matrices, respectively and WK , WQ and WV ∈
RD×D. Lastly, we compute the final contextualized image
representation as:

f I
global = WL

(
V ⊤ softmax

((
QK⊤)
√
D

))
(3)

where WL is the final language projection layer that maps
the visual representations into the joint visual-semantic em-
bedding space and WL ∈ RD×D .
Modified attention operation. Our Multiple Instance
Learning formulation necessitates the presence of region
representations in each input frame since we are predicting a
spectrogram mask for each region. Additionally, we require
these region representations to be well-aligned with the lan-
guage modality such that a region should have a high simi-
larity with the language query if its visual concept is seman-
tically consistent with that of the query. Consequently, we
extract a set of spatiotemporal region representations fV

conv
for our input video V with T frames. We encode the t-frame
as: fV

t,conv = gV (Vt) ∈ RHW×D. Finally, we compute
the set of language-aligned spatiotemporal region represen-
tations by projecting them through the value and language
projection layers as follows:

fV
val = WV f

V
conv

fV = WLf
V
val

(4)

We pass this set of spatiotemporal region representations
into our audio separation model M along with an input au-
dio spectrogram to predict a mask.

C. Mix-and-separate training objective in Sec-
tion 3.2

Given an input video V , we begin by using the CLIP
visual encoder to extract a set of language-grounded spa-
tiotemporal region representations fV ∈ RT×H×W×D. For
the j-th spatiotemporal region, we tile its visual representa-
tion by the factor HAWA and concatenate them with the

audio bottleneck representations (Figure 1) along the chan-
nel dimension: fAV

j = concat(fA, tile(fV
j )), where fAV

j

has the dimensions RHA×WA×2D. We pass the concate-
nated representations into the decoder D consisting of a se-
ries of upsampling convolutional layers to generate a real-
valued ratio mask: M̂j = D(fAV

j ) ∈ RF×N . To predict the
separated audio source, each element of the mask is multi-
plied with the corresponding location in the input spectro-
gram: ÂS

j = M̂j ⊙ AS , where ⊙ denotes the Hadamard
product. The mask is then applied to the input spectrogram
to predict the audio component corresponding to the video:
ÂS

j = M̂j ⊙AS .
To train the audio U-Net decoder D to predict spectro-

gram masks given fused audio-visual and audio-text rep-
resentation inputs, we use the self-supervised “mix-and-
separate” learning objective since we do not have ground-
truth audio source annotations within each training video.
Specifically, we synthetically combine the audio of multiple
videos and the goal is to use the visual information within
each video to separate its corresponding audio waveform.
This objective allows us to compute ground-truth ratio spec-
trogram masks for training without annotations. Next, we
describe the generation process of the ground-truth ratio
masks for a pair of videos which is also commonly used in
prior work [3, 9]; the same process is generalizable to any
number of input videos. Given a pair of ground-truth audio
spectrograms AS

1 and AS
2 , we compute their ratio masks as

follows:

M1 =
AS

1

AS
1 +AS

2

and M2 =
AS

2

AS
1 +AS

2

(5)

We adopt the mask prediction loss [1,3,9] to train the audio
U-Net decoder D for audio separation. Given the pair of
predicted masks M̂1 and M̂2, we compute the mask predic-
tion loss as:

Lmask = ||M̂1 −M1||1 + ||M̂2 −M2||1 (6)

We note that it is also possible to compute the above-
mentioned L1 regression loss using the ground-truth audio
spectrograms but prior work [3, 9] has demonstrated it is
more numerically stable to use the ratio masks for supervi-
sion.

D. Ablation experiments
Ablation over region MIL mask prediction vs video-level
prediction. We evaluate the effectiveness of learning to
perform source separation at the region level as compared
to the video level in Table 1. To perform video-level spec-
trogram mask prediction, we adopt the same video aggrega-
tion function in Sound of Pixels [9], where the region rep-
resentations are maxpooled over the channel dimension to
compute a final video representation that is passed into the
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Figure 1. Audio-visual separation approach in VAST. We infer
a predicted spectrogram mask for each spatiotemporal region and
aggregate them to compute a final prediction for the input video.

audio U-Net decoder D (Figure 1). We note that our pro-
posed alignment objectives are used in the training of both
model variants. We observe that training a model to per-
form region-level predictions under the MIL formulation
results in a significant performance gain over performing
video-level predictions, which validates our hypothesis that
a model trained to perform video-level predictions may not
be able to identify candidate objects that emit sound.
Effect of sharing parameters in U-Net encoder E . Prior
work [3] learns a separate audio encoder for encoding the
predicted audio waveforms to classify them according to
discrete audio category labels. Here, we aim to determine
the benefit of using shared parameters for our audio encoder
component of the U-Net model E in Table 3. In this case,
unlike prior work [3], we observe that using a shared audio
U-Net encoder to encode the input audio spectrogram for
source separation and the predicted spectrogram for the two
new losses is integral to improving the final performance of
our trained model on audio-visual separation.
Ablation over weights of LAudio-language and LTri-modal. We
report the results of our ablation over the weights of our
proposed audio-language and tri-modal consistency align-
ment objectives in Table 4. The results of adding the audio-
language consistency loss seem to validate our initial hy-
pothesis that using a lower weight term for this loss is ben-
eficial. As discussed earlier in Section 3.1, this is similar
to the multimodal contrastive formulation used for training
joint vision-language foundation models such as CLIP and
ALIGN. Thus, there is a high probability that we are treat-
ing some latent captions as false negatives for each video
even though they may contain similar sounding objects.
Setting a low weight helps to alleviate this negative conse-
quence. However, we observe that the audio-language con-
sistency loss is still very helpful for improving audio-visual
source separation as well as learning a strong transitive
alignment between the audio and natural language modality.
The reported results also suggest that adding the tri-modal
consistency loss also helps to improve performance signifi-
cantly. In this case, we note that this alignment objective is
formulated as a KL divergence minimization problem and
does not require negative samples. Consequently, it may

not be as important to use a low weight for this term as
compared to the audio-language consistency objective.

Prediction NSDR SIR SAR
Video-level 6.72 11.47 10.58
Region-level 8.58 14.16 12.35

Table 1. Comparison between video-level and region-level au-
dio predictions with our trained model on the SOLOS dataset.

Replacing regions with bounding boxes. To determine if
our approach can generalize well to pre-extracted bounding
boxes during inference, we evaluate our trained model by
replacing spatiotemporal region representations with those
of bounding boxes during inference. We encode each
bounding box as an image representation separately. Note
that this is different from the region representations that are
extracted from the modified self-attention operation in CLIP
visual encoder (Section B). Consequently, our trained mod-
els may not generalize well to the different visual represen-
tations used during training and inference. We report our
results in Table 2, where we observe that using bounding
box representations in our trained models leads to a slightly
lower performance in audio-visual separation.

Visualizations of latent captions. To understand what the
latent captions encode, we provide some examples of their
attention maps with respect to the video frames in Figure 3.
Interestingly, we observe that a latent caption is capable of
describing multiple instances of the same object in the mid-
dle visualization, where it is focusing on all three clarinets.

Figure 2. Extraction of latent captions for pseudo-supervision.
We formulate the extraction mechanism as an optimization process
and learn the weights of the parameter p by maximizing the cosine
similarity between the final visual and language representations.
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NSDR ↑ SIR ↑ SAR ↑
Regions 8.58 14.16 12.35
Boxes 8.32 13.63 12.22

Table 2. Evaluation on SOLOS. We evaluate our trained model
by replacing spatiotemporal region representations with those of
detected bounding boxes and their representations.

E. Datasets

We train and evaluate our proposed VAST approach as
well as other baselines on the widely-used SOLOS, MUSIC
and AudioSet datasets which we describe below.
MUSIC [9]. The MUSIC dataset consists of videos that
are downloaded from YouTube using queries about vari-
ous musical instruments. It contains approximately 536 and
149 solo and duet videos, respectively. The entire set is
comprised of videos containing 11 instrument categories:
accordion, acoustic guitar, cello, clarinet, erhu, flute, saxo-
phone, trumpet, tuba, violin and xylophone. Since the orig-
inal splits of the dataset are not released, we adopt the same
splits as [3], where the first and second videos in each in-
strument category are used as validation / test data and the
rest are used for training.
SOLOS [5]. Similar to the MUSIC dataset, the SOLOS
dataset contains 755 videos of musical videos that span
13 instrument categories. These videos are obtained from
YouTube where the authors use queries of instruments as
well as the ‘solo’ or ‘auditions’ tag. Unlike the MUSIC
dataset, the SOLOS dataset does not contain duet videos.
AudioSet-Unlabeled [4]. AudioSet is a dataset that con-
tains over two million 10 second video clips spanning 632
audio event classes that are sourced from YouTube. Com-
pared to the MUSIC and SOLOS datasets, the audio clips in
AudioSet are generally much noisier due to the presence of
background sounds. Following prior work [3], we filter the
video clips according to 15 musical instrument categories
and select those from the ‘unbalanced’ split for training and
the ‘balanced’ split for validation and testing.

F. Implementation details

We implement our proposed approach using the Pytorch
deep learning library [6]. Consistent with prior work [3, 9],
we downsample the audio clips to 11 kHz and use a Hann
window size of 1022 samples1 and a hop length of 256 sam-
ples in the STFT operation. This step results in an audio
spectrogram of dimensions 512 x 256, which is re-sampled
on a log-frequency scale to compute a final spectrogram of
dimensions 256 x 256. We use the CLIP Resnet50 model
[7] and its language encoder to extract a latent caption for

1While it is common to use powers of 2 as FFT size, we use 1022 as
opposed to 1024 to be consistent with previous literature.

each video as well as encode visual and language represen-
tations for audio separation. We set the dimension of the
audio U-Net bottleneck features D to be the same as that
of CLIP embedding space, which is 1024. We freeze the
CLIP encoders during training and train the audio U-Net
from scratch using a base learning rate of 4e-3. We train all
models for 100 epochs with the SGD optimizer as well as
using a linear warmup of 1000 steps and anneal the learning
rate using a cosine decay schedule. We train our full model
using 4 Quadro 6000 GPUs for approximately 8 days.

Ground-truth object 
label: violin

Ground-truth object 
label: clarinet

Ground-truth object 
label: trumpet

Figure 3. Visual attention of latent captions. We see that the
latent captions tend to focus on salient foreground objects.

G. Limitations
While we have demonstrated that our proposed VAST

approach is able to generalize well to free-form natural lan-
guage queries for source separation, we observe that it is
only able to handle visually descriptive adjectives such as
person playing a small trumpet instead of a loud trumpet.
We hypothesize that this limitation is due to a higher like-
lihood of visually descriptive adjectives appearing in the
alt text of the pretraining dataset used by CLIP. Addition-
ally, we only focus on separating sounds of different object
classes. Our approach does not generalize well to discrimi-
nating between sounds from multiple instances of the same
class (cf ., Fig 5 middle showing that we can detect the clar-
inets but not distinguish the different instances). An exam-
ple of such a challenging task is audio-visual speech sepa-
ration, where there are two or more people speaking simul-
taneously and the goal is to separate for the speech for each
person. Similar to existing audio-visual speech separation
approaches [2, 8], future work can aim to address this lim-
itation by leveraging representations of different instances
and additional information in the form of object labels and
speech narrations.

H. Demo video with predicted audio compo-
nent generations

We provide a demo video where we evaluate our trained
models on random videos in the wild which contain two
instruments. The video contains 4 evaluation samples on
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Shared audio SOLOS MUSIC Audioset
encoder params NSDR ↑ SIR ↑ SAR ↑ NSDR ↑ SIR ↑ SAR ↑ NSDR ↑ SIR ↑ SAR ↑

No 7.52 12.68 10.22 7.39 13.25 9.81 3.27 6.48 11.51
Yes 8.58 14.16 12.35 8.08 13.97 11.33 11.33 7.62 13.20

Table 3. Ablation over using shared parameters for audio U-Net encoder. We observe that using a common audio encoder E to
encode both mixed and predicted audio inputs for separation and localization, respectively, helps to improve performance on audio-visual
separation.

LAudio-language LTrimodal NSDR ↑ SIR ↑ SAR ↑
weight weight

0.0 0.0 5.47 10.55 10.95
1e-1 0.0 6.09 11.77 10.77
1e-2 0.0 8.08 13.74 12.18
1e-3 0.0 7.45 13.40 11.11
1.0 - 1.24 4.97 11.27
- 1e-1 8.02 13.82 11.76

0.0 1e-2 7.92 13.49 11.65
0.0 1e-3 8.10 13.84 11.79
0.0 1.0 6.81 12.61 11.00

1e-3 1e-2 8.58 14.16 12.35

Table 4. Ablation results over the weights of the audio-
language and tri-modal consistency alignment objectives on
SOLOs. We observe that the inclusion of the audio-language and
tri-modal consistency alignment objectives is beneficial for audio-
visual separation.

the task of audio-language source separation in the input
videos. Additionally, we also localize the separated audio
sources in the corresponding video frames. For the first
task, our objective is to separate an audio input based on
a natural language query and the goal of the second task is
to localize the predicted separated audio in its correspond-
ing video. Note that we use our full VAST model that
is trained with our proposed audio-language and tri-modal
consistency alignment objectives. For each evaluation sam-
ple, we provide the following in order:

1. Input video with mixed audio input (composed of two
different instruments)

2. Separated audio predicted by the full VAST model of
the first instrument

3. Attention heatmap between the first separated audio in
(2) and the center frame

4. Separated audio predicted by the full VAST model of
the second instrument

5. Attention heatmap between the second separated audio
in (4) and the center frame

We observe that our full VAST model, that is trained with-
out ground-truth text annotation or object bounding boxes,
is generally able to separate the audio inputs based on natu-
ral language queries.
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