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Table 1. The P1 error comparisons with different attention mod-
ules on Human3.6M dataset. The best result in each column is
marked in red.

Module Frames T Parameters FLOPs (M) P1(mm)
iterative 27 5.91M 2707 57.8
additive 27 4.72M 2166 66.3
STC 27 4.72M 2166 57.0

The supplementary material contains: 1) the ablation
studies of attention module, positional embedding, post-
processing, and free parameters on Human3.6M; 2) the per-
joint error comparison on Human3.6M; 3) more qualitative
analyses; 4) the code release of our implementations.

1. Ablation Studies on Human3.6M

1.1. Attention Module

To verify the effectiveness of our proposed STC block,
we compare two attention block variants, i.e., iterative at-
tention and additive attention, with different decomposition
strategies of spatial and temporal attentions. Figure 1 shows
the schematic illustration of the block variants. Specifically,
iterative attention stacks a spatial attention layer and a tem-
poral attention layer to simulate the full spatio-temporal at-
tention. Additive attention also models spatial and tempo-
ral contexts in parallel but fuses the outputs of both atten-
tions by element-wise summation. Table 1 summarizes the
P1 error comparisons on Human3.6M dataset. Here we do
not exploit the positional embedding for simplicity and take
the estimated 27-frame 2D poses by CPN as input. As indi-
cated by the results, our STC block obtains the lowest error
and reaches a good trade-off between model capacity and
computational cost.

*This work is supported by the National Natural Science Foundation of
China under Grants 61932009.
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Figure 1. Modeling spatio-temporal correlation for 3D human
pose estimation by (a) iterative capturing spatial and temporal con-
text, (b) adding the outputs from two separate attention layers, and
(c) our Spatio-Temporal Criss-cross attention (STC), i.e., a two-
pathway block that models spatial and temporal information in
parallel and concatenates the output from attention layer.
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Figure 2. The illustration of different positional embedding func-
tions: (a) SPE1, (b) APE, (3) CPE, and (d) SyPE.

1.2. Positional Embedding

Next, we compare our SPE1 with three different po-
sitional embedding functions, including Absolute Position
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Table 2. The P1 error comparisons of different positional embed-
ding functions on Human3.6M dataset. The best result in each
column is marked in red.

P1 (mm)
SPE1 #1 48.3
APE #2 48.9
CPE #3 49.6
SyPE #4 49.2

Embedding (APE), Centrality Positional Embedding (CPE)
and Symmetric Positional Embedding (SyPE), by different
separations of body joint groups, as shown in Figure 2.

Absolute positional embedding considers each joint in-
dependently and replaces the group index in SPE1 with joint
index. Centrality positional embedding divides the N
body joints into six groups according to the adjacent dis-
tance to the hip joint. The groups in CPE are defined as

g0 = {hip}
g1 = {spine, right hip, left hip}
g2 = {thorax, right knee, left knee}
g3 = {neck, right feet, left feet, right shoulder, left shoulder }
g4 = {head, right elbow, left elbow}
g5 = {right wrist, left wrist}

(1)
Instead, symmetric positional embedding divides N body
joints into eleven groups according to the symmetrical
structure of human body. The groups in SyPE are

g0 = {hip}
g1 = {spine}
g2 = {thorax}
g3 = {neck}
g4 = {head}
g5 = {right hip, left hip}
g6 = {right knee, left knee}
g7 = {right feet, left feet}
g8 = {right shoulder, left shoulder}
g9 = {right elbow, left elbow}
g10 = {right wrist, left wrist}

(2)

For each positional embedding function, the joints in the
same group are attached with the same embedding vector.
Table 2 compares our SPE1 with the three positional embed-
ding functions on Human3.6M dataset. In this experiment,
we take the estimated 2D poses by CPN with 9 frames as
input. Particularly, our SPE1 achieves the lowest P1 error
among four embedding functions, validating the advances
of group separation by the dynamic chain structure in SPE1.

Table 3. The P1 error comparisons with the state-of-the-art meth-
ods using post-processing on Human3.6M dataset. The best result
in each column is marked in red.

Method Publication post-processing P1 ↓
CPN GT

ST-GCN [1] ICCV’19 ✓ 48.8 -
UGCN [6] ECCV’20 ✓ 44.5 -
Einfalt [2] aXiv’22 ✓ 44.2 -

StridedFormer [3] TMM’22 ✓ 43.7 28.5
MHFormer [4] CVPR’22 ✓ 42.4 -
P-STMO [4] ECCV’22 ✓ 42.1 -
STCFormer ✓ 40.8 21.3

1.3. Post-Processing

Recently, several works [1–6] employ the post-
processing module proposed in [1] to improve the estima-
tion accuracy. Accordingly, we further exploit the same
post-processing in our STCFormer and compare with these
baselines. Here, the models take the 243-frame estimated
2D poses by CPN or the 2D ground truth as input. As shown
in Table 3, STCFormer achieves the best P1 error of both
CPN input (40.8mm) and GT input (21.3mm).

1.4. Free Parameters

There are three free parameters for the STCFormer (i.e.,
the number of blocks L, the channel dimension C and the
number of heads H). In this set of experiments, we test dif-
ferent values of these parameters to examine different archi-
tectures of STCFormer. In our implementations, we adjust
each free parameter in order while fixing the other two pa-
rameters. Table 4 lists the comparisons. As indicated by the
results, STCFormer with L = 6, C = 256 and H = 8 ob-
tains the lowest error, and manages a good tradeoff between
regression capacity and computational cost, that is regarded
as the standard version of STCFormer.

Table 4. The P1 error of STCFormer with different number of
blocks L, channel dimension of joint-based embedding C, and
number of heads H in attention blocks on Human3.6M dataset.
The error of default setting is marked in red.

L C H Parameters FLOPS (M) P1(mm)
4 64 4 0.2M 91 50.0
6 64 4 0.3M 137 46.2
8 64 4 0.4M 183 47.5
6 128 4 1.19M 545 45.6
6 256 4 4.75M 2173 44.4
6 512 4 18.91M 8678 44.8
6 256 1 4.75M 2173 45.3
6 256 2 4.75M 2173 45.0
6 256 4 4.75M 2173 44.4
6 256 8 4.75M 2173 44.1
6 256 16 4.75M 2173 44.2
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Figure 3. The per-joint error comparisons in terms of P1 with
the state-of-the-art methods on Human3.6M dataset. ‘L’ and ‘R’
denote the left part and right part of the human body, respectively.

2. Per-joint Error Comparison on Human3.6M
In Figure 3, we compare the per-joint error of STC-

Former and baseline methods. The input is 27-frame 2D
poses estimated by CPN. A general performance tendency
is observed that the joint errors increase along the body
limbs, e.g., shoulder<elbow<wrist. Among the compet-
itive methods including StridedFormer [3], P-STMO [5],
and MHFormer [4], our STCFormer exhibits the best results
on 10 out of 12 joints.

3. Inference Speed on Human3.6M
Table 5 here summarizes the P1 error and the inference

speed on Human3.6M dataset. We measure the speed on a
single P40 GPU, and compare two recent transformer-based
methods of MHFormer [4] and MixSTE [7]. Overall, our
STCFormer achieves the lowest P1 error and the fastest in-
ference speed for both 27-frame and 81-frame inputs. For
the 243-frame inputs, STCFormer also shows better trade-
off than MHFormer and MixSTE. The results demonstrate
the advantage of STC attention to decompose full spatio-
temporal attention in an economic and effective way.

Table 5. The P1 error and inference speed on Human3.6M dataset.
The 2D pose input is estimated by CPN. We measure the speed on
a single P40 GPU. The best score is marked in red.

Method Frames T Speed (clip/s) P1(mm)
MHFormer [4] 27 44 45.9
MixSTE [7] 27 46 45.1
STCFormer 27 72 44.1
MHFormer [4] 81 43 44.5
MixSTE [7] 81 35 42.7
STCFormer 81 65 42.0
MHFormer [4] 243 40 43.2
MixSTE [7] 243 12 40.9
STCFormer 243 40 41.0
STCFormer L 243 21 40.5

4. Qualitative Analysis
In this section, we present more qualitative analyses of

our STCFormer. Figure 4 and Figure 5 show more ex-
amples of visualized spatial attention and temporal atten-

tion, respectively, on Human3.6M dataset. Moreover, Fig-
ure 6 showcases 3D human pose estimation results by STC-
Former and MHFormer on MPI-INF-3DHP dataset. In ad-
dition, to validate the generalization ability of our model,
we crawled several videos from video Website as an addi-
tional real test and the pose estimation results by our STC-
Former are illustrated in Figure 7. We also provide one
video demo (demo.mp4), demonstrating the results of pose
estimation on in-the-wild videos.
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Figure 4. Visualizations of attention maps from the spatial attention modules in STCFormer. The x-axis and y-axis correspond to the
queries and the predicted outputs, respectively.
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Figure 5. Visualizations of attention maps from the temporal attention modules in STCFormer. The x-axis and y-axis correspond to the
queries and the predicted outputs, respectively.
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Figure 6. Examples of 3D pose estimation by MHFormer [4] and our STCFormer on MPI-INF-3DHP. The gray skeleton is the ground-
truth 3D pose. Blue, orange and green skeletons represent the left part, right part and torso of the estimated human body, respectively. The
number refers to the P1 error (mm) of joints in figure.



Figure 7. Examples of 3D pose estimation by our STCFormer on in-the-wild videos.
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