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The catalog of this appendix is in the following.

Sec. A summarizes our main contributions.

Sec. B provides a well-organized summary for the pa-
per novelty.

Sec. C makes more clarifications on our empirical
study.

Sec. D.l1 examines the learning process, Sec. D.2
visualizes the saliency map, and Sec. D.3 depicts
more impact of data augmentations for the comprehen-
sive comparison between fixed-dataset periodic train-
ing and training on non-repetitive samples.

Sec. E evaluates various network architectures by plot-
ting their learning curves.

Sec. F shows the learning process of different pre-
training data using domain adaptation as the down-
stream task.

Sec. G presents more details on our proposed S2RDA
benchmark, e.g., comparing synthetic data with real
data from different angles.

Sec. H provides other implementation details for
supervised learning/pre-training and downstream do-
main adaptation.

Sec. 1 reviews other related works on real datasets,
data manipulation [55,62,66], deep models [15,27,63],
transfer learning [25,45, 73], domain adaptation [68],
and OOD generalization [66].

A. Our Main Contributions

Our main contributions are summarized as follows.

*Corresponding author.

* On the well-controlled IID experimental condition en-
abled by 3D rendering, we empirically verify the typ-
ical insights on shortcut learning, PAC generalization,
and variance-bias trade-off, and explore the effects
of changing data regimes and network structures on
model generalization. The key design wherein is to
compare the traditional fixed-dataset periodic training
with a new strategy of training on non-repetitive sam-
ples.

* We explore how variation factors of an image affect the
model generalization, e.g., object scale, material tex-
ture, illumination, camera viewpoint, and background,
and in return provide new perceptions for data genera-
tion.

e Using the popular simulation-to-real classification
adaptation as a downstream task, we investigate how
synthetic data pre-training performs by comparing
with pre-training on real data. We have some sur-
prising and important discoveries including synthetic
data pre-training is also prospective and a promising
paradigm of pre-training on big synthetic data together
with small real data is proposed for realistic supervised
pre-training.

* We propose a more large-scale synthetic-to-real bench-
mark for classification adaptation (termed S2RDA), on
which we also provide a baseline performance analysis
for representative DA approaches.

B. Summary of Paper Novelty

Now it is becoming more and more important to work
on methods that use simulated data but perform well in
practical domains whose data or annotation are difficult
to acquire, e.g., medical imaging. However, previous re-
search works have not studied various factors on a synthe-
sized dataset for image classification and domain adapta-
tion comprehensively and systematically. To fill the gap, we



present the first work, ranging from bare supervised learn-
ing to downstream domain adaptation. It provides many
new, valuable learning insights for OOD/real data gener-
alization, though the verification of some existing, known
theories in our well-controlled IID experimental condition
has also been done for comprehensive coverage. It is essen-
tial for synthetic data learning analysis, which is completely
missing in the context of image classification. We clarify
the paper novelty below.

* The motivation that we utilize synthetic data to ver-
ify typical theories and expose new findings is novel.
Real data are noisy and uncontrolled, which may hin-
der the verification of typical theories and exposure to
new findings. In the context of image classification,
existing works verify classical theories and reveal new
findings on real data. However, the process of acquir-
ing real data cannot be controlled, the annotation accu-
racy cannot be guaranteed, and there may be duplicate
images in the training set and test set, which leads to
the fact that the training set and test set are no longer
independent and identically distributed (IID). To rem-
edy them, we resort to synthetic data generated by 3D
rendering with domain randomization.

* The comparison between fixed-dataset periodic train-
ing and training on non-repetitive samples and the
study of shortcut learning on our synthesized dataset
are novel. We admit that some of our findings are clas-
sical theories, e.g., PAC generalization and variance-
bias trade-off, which should be verified when one in-
troduces a new dataset. We introduce a new dataset of
synthetic data and thus do such a study for comprehen-
sive coverage, which first compares fixed-dataset peri-
odic training with training on non-repetitive samples
generated by 3D rendering. Particularly, we also ver-
ify a recent, significant perspective of shortcut learning
and design new experiments to demonstrate that ran-
domizing the variation factors of training images can
block shortcut solutions that rely on context clues in
the background.

* Investigating the learning characteristics and proper-
ties of our synthesized new dataset comprehensively
is novel, and our experiments yield many interesting
and valuable observations. Synthetic data are cheap,
label-rich, and well-controlled, but there hasn’t been
a comprehensive study of bare supervised learning on
synthetic data in the context of image classification. To
our knowledge, we are the first to investigate the learn-
ing characteristics and properties of our synthesized
new dataset comprehensively, in terms of refreshed ar-
chitecture, model capacity, training data quantity, data
augmentation, and rendering variations. The empiri-

cal study on bare supervised learning yields many new
findings, e.g.,

IID and OOD generalizations are some type of
Zero-sum game,

ViT performs surprisingly poorly,

there is always a bottleneck from synthetic data
to OOD/real data,

neural architecture search (NAS) should also
consider the search for data augmentation, and

different factors and even their different values
have uneven importance to IID generalization.

» Synthetic data pre-training, its comparison to real
data pre-training, and its application to downstream
synthetic-to-real classification adaptation are novel,
and our experiments yield many interesting and valu-
able observations. To our knowledge, there is little
research on pre-training for domain adaptation. Kin
et al. [29] preliminarily study the effects of real data
pre-training on domain transfer tasks. Differently, we
focus on the learning utility of synthetic data and take
the first step towards clearing the cloud of mystery sur-
rounding how different pre-training schemes including
synthetic data pre-training affect the practical, large-
scale synthetic-to-real classification adaptation. Be-
sides, we first study and compare pre-training on the
latest MetaShift dataset [40]. The empirical study on
downstream domain adaptation yields many new find-
ings, e.g.,

— DA fails without pre-training,

— different DA methods exhibit different relative
advantages under different pre-training data,

— the reliability of existing DA method evaluation
criteria is unguaranteed,

— synthetic data pre-training is better than pre-
training on real data (e.g., ImageNet) in our
study, and

— Big Synthesis Small Real is worth deeply re-

searching.

* Our introduced S2RDA benchmark is novel and will
advance the field of domain adaptation research on
transfer from synthetic to real.

Our findings may challenge some of the current conclu-

sions, but they also shed some light on the important fields
in computer vision and take a step towards uncovering the
mystery of deep learning.



Table Al. Domain adaptation performance on SubVisDA-10 with varied pre-training schemes (ResNet-50). Green or red: Best Acc. or

Mean in each row (among compared DA methods).

Pre-training Data #1Iters # Epochs Ace. | Mean | Ace.

No Adaptation DANN
Mean = Acc. Mean Acc. Mean Acc. Mean Acc. Mean

MCD RCA SRDC DisClusterDA

ImageNet-990 200K 10 50.11 4545 @ 55.68
ImageNet-990+Ours 200K 9 52.87 48.85 58.42

54.67 58.84 5844 5879 60.18 6025 57.68 57.62 57.42
58.02 60.52 62.27 6228 63.35 63.60 60.89 61.90 63.10

ImageNet 200K 10 53.24 4538 57.77

5559 6190 61.75 61.59 60.72 6256 59.24 61.18 59.01

C. More Clarifications on Our Empirical
Study

Necessity of domain randomization study in Table 2.
We expect that assessing variation factors should be essen-
tial for synthesizing data for image classification, which is
missing in previous work [48]. We admit that such a study
has been done for detection and scene understanding in
prior methods [49, 62, 64], but the generalizability of those
results to image classification is lack of guarantee. Thus,
we follow them and do the study for image classification,
where we consider a different set of factors (e.g., light, tex-
ture, and flying distractors in [64]). It may be expected that
a fixed value would underperform randomized values, but
how much each factor and each value degrade is unknown.
One cannot know how important they are without such a
quantitative study. Insightfully, our new results in Table 2
also suggest that the under-explored direction of weighted
rendering is worth studying and provide preliminary guid-
ance/prior knowledge for learning factor distribution.

Additonal experiments on ImageNet-990+QOurs improv-
ing over ImageNet-990. To further justify that ImageNet-
990+Ours improves over ImageNet-990, we do additional
experiments by using a different cosine decay schedule for
the learning rate: 7, = n1 + 0.5(no — m1)(1 + cos(mp)),
where p is the process of training iterations normalized to
be in [0, 1], the initial learning rate ny = 0.1, and the fi-
nal learning rate n; = 0.001. The results for several DA
methods are reported in Table Al. As we can see, with
fine-grained subclasses merged into one, ImageNet-990 un-
derperforms ImageNet by a large margin, suggesting that it
may be helpful to use fine-grained visual categorization for
pre-training; in contrast, by adding our 120K synthetic im-
ages, ImageNet-990+Ours is comparable to or better than
ImageNet, confirming the utility of our synthetic data.

Pre-training with an increased number of classes helps
DA. In Table 3, we have compared SublmageNet involv-
ing only target classes in training with ImageNet involv-
ing both target and non-target classes; with abundant pre-
training epochs, the latter is evidently better than the former,
indicating that learning rich category relationships is help-
ful for downstream DA. A similar phenomenon is observed

in synthetic data pre-training. For example, we have done
experiments of pre-training on the synthetic domain of our
proposed S2RDA-49 task; compared with pre-training on
Ours (120K images, 10 classes), MCD improves by 5.97%
in Acc. and 6.06% in Mean, and DisClusterDA improves
by 4.69% in Acc. and 5.36% in Mean.

Necessity and applicability of the proposed S2RDA.
Note that SRDC outperforms the baseline No Adaptation by
~10% on S2RDA-49 and DisClusterDA outperforms that
by ~5%, verifying the efficacy of these DA methods. The
observations also demonstrate that S2RDA can benchmark
different DA methods. Compared to SubVisDA-10 (cf. Ta-
ble 3), SRDC degrades by ~7% on S2RDA-49, which is
reasonable as our real domain contains more practical im-
ages from real-world sources, though our synthetic data
contain much more diversity, e.g., background (cf. Fig.
1). Differently, S2RDA-MS-39, which decreases by >20%
over S2RDA-49, evaluates different DA approaches on the
worst/extreme cases (cf. Fig. 6), making a more compre-
hensive comparison and acting as a touchstone to examine
and advance DA algorithms. Reducing the domain gap be-
tween simple and difficult backgrounds is by nature one of
the key issues in simulation-to-real transfer, as also shown
in [48]; therefore, reducing such a domain gap is one of
the criteria for judging excellent DA methods. To sum up,
S2RDA is a better benchmark than VisDA-2017, as it has
more realistic synthetic data and more practical real data
with more object categories, and enables a larger room of
improvement for promoting the progress of DA algorithms
and models.

D. Fixed-Dataset Periodic Training vs. Train-
ing on Non-Repetitive Samples

D.1. Examining Learning Process

In Fig. Al, we examine the learning process of fixed-
dataset periodic training and training on non-repetitive sam-
ples based on ResNet-50 with no, weak, and strong data
augmentations. To this end, we plot the evolving curves of
the following eight quantities with the training: training loss
measured on the synthetic training set, test loss (IID) mea-
sured on the synthetic IID test set, training accuracy mea-
sured on the synthetic training set, test accuracy (IID) mea-



sured on the synthetic IID test set, test loss (IID w/o BG)
measured on the synthetic IID without background test set,
test loss (OOD) measured on the SubVisDA-10 real/OOD
test set, test accuracy (IID w/o BG) measured on the syn-
thetic IID without background test set, and test accuracy
(OOD) measured on the SubVisDA-10 real/OOD test set.
The accuracy is measured using the ground truth labels, just
for visualization.

D.2. Visualizing Saliency Map

We visualize the saliency maps, obtained from the
ResNet-50 (Fig. A2), ViT-B (Fig. A3), and Mixer-B (Fig.
A5) trained on a fixed dataset or non-repetitive samples with
no data augmentation. We consider two types of saliency vi-
sualization methods: input gradients which backpropagates
the output score at the ground-truth category to the input im-
age, and Grad-CAM which weights the feature maps with
the gradients w.r.t. the features. For ViT-B, in Fig. A4,
we also visualize the attention maps of the classification to-
ken to all image patches at the last multi-head self-attention
layer. The last five columns correspond to results at the 20-
th, 200-th, 2K-th, 20K-th, and 200K-th training iterations
respectively. The example image in each row is randomly
selected from IID test data.

D.3. More Impact of Data Augmentations

From Table 1, in OOD tests, training on non-repetitive
images with no augmentation is superior to the fixed-dataset
periodic training with weak augmentation, but far inferior to
that with strong augmentation. It to some extent implies that
the image transformations produced by 3D rendering itself
do contain the hand-crafted weak augmentation changing
pixel position in an image, but not the strong one changing
both position and value of pixels.

E. Evaluating Various Network Architectures

In Fig. A6, we evaluate various network architectures by
plotting their learning curves, in terms of training loss, test
loss (IID), training accuracy, test accuracy (IID), test loss
(IID w/o BG), test loss (OOD), test accuracy (IID w/o BG),
and test accuracy (OOD). Various network architectures —
ResNet-50 [23], VIiT-B [15], and Mixer-B [63] are trained
on non-repetitive samples with strong data augmentation.

We note that ViT performs poorly despite data augmen-
tation and more training epochs. It may be because ViT can-
not well fit datasets with high dimension and large variance,
and does not learn features less dependent on the back-
ground. Two possible solutions to improve are decreasing
the input patch size for fine-grained feature interaction and
smoothing the dataset (e.g. mixup [71]) for data distribution
completeness.

F. Comparing Pre-training for Domain Adap-
tation

In Fig. A7, we compare different pre-training data us-
ing domain adaptation (DA) on SubVisDA-10 as the down-
stream task and show the learning process for several rep-
resentative DA approaches. The considered pre-training
schemes include (1) No Pre-training where the model pa-
rameters are randomly initialized, (2) Ours denotes our syn-
thesized 120K images of the 10 object classes shared by
SubVisDA-10, (3) SubImageNet is the subset collecting ex-
amples of the 10 classes from ImageNet [13], (4) ImageNet
(10 Epoch) has 1K classes and 10 pre-training epochs, and
5) ImageNet* uses the official ResNet-50 [23] checkpoint
pre-trained on ImageNet for 120 epochs. The compared
DA methods include No Adaptation that trains the model
only on the labeled source data, DANN [18], MCD, [53],
RCA [10], SRDC [59], and DisClusterDA [61].

G. More Details on Our Proposed S2RDA
Benchmark

Dataset Details. Our proposed Synthetic-to-Real
(S2RDA) benchmark for more practical visual domain
adaptation (DA) includes two challenging transfer tasks of
S2RDA-49 and S2RDA-MS-39. In Fig. A8, we show the
distribution of the number of images per class in each real
domain, which is exhibited to be a long-tailed distribution
where a small number of classes dominate. How we collect
the real data from diverse real-world sources is recorded in
respective files included in the code. Our S2RDA dataset is
publicly available at https://pan.baidu.com/s/
1fHHagrEHbUZLXEg9XKpgSg?pwd=w9owa.

Comparing Synthetic Data with Real Data. We pro-
vide quantitative and qualitative comparisons for VisDA-
2017, our synthesized dataset, and ImageNet as follows.
The mean and standard deviation of VisDA-2017, our syn-
thesized dataset, and ImageNet are [0.878, 0.876, 0.874]
and [0.207, 0.210, 0.216], [0.487, 0.450, 0.462] and [0.237,
0.251, 0.270], and [0.485, 0.456, 0.406] and [0.229, 0.224,
0.225] respectively. As we can see, the statistics of our syn-
thesized dataset are closer to the real dataset ImageNet than
VisDA-2017. 1t is consistent with the observation in Ta-
ble 1 that our synthesized dataset used for training yields
higher OOD/real test accuracy than SubVisDA-10. Except
for quantitative comparisons, we have also provided the
qualitative visualization for the three datasets and the pro-
posed S2RDA benchmark in Fig. 1 and Fig. 6 respectively,
which demonstrates that our synthesized dataset is visually
more similar to ImageNet.


https://pan.baidu.com/s/1fHHaqrEHbUZLXEg9XKpgSg?pwd=w9wa
https://pan.baidu.com/s/1fHHaqrEHbUZLXEg9XKpgSg?pwd=w9wa

f

I

(a) Training loss (b) Test loss (IID)

:
\

40k 80k 20k 160k 200k 41

(e) Test loss (IID w/o BG)

160k 200k
(O0OD)

(f) Test loss

i
B
:

i

40k 8Ok 120k 160k 200k 40k 20k 160k 200k

(i) Training loss (j) Test loss (IID)

F
%

A 80k 120k 160k 200k C ¢

(m) Test loss (IID w/o BG)

120k 160k

(n) Test loss (OOD)

3
W

A0k 80k 120k 160k

(c) Training acc. (d) Test acc. (IID)

%

40k 80k 120k 160k 200k

(g) Test acc. (IID w/o BG)

1 160k 0k

(h) Tést acc. (OOD)

20k 16 200k 0 40 80k 20k 160k

(1) Test acc. (IID)

(k) Training acc.

|

=

K 80K 120k 160k

(o) Test acc. (IID w/o BG) (p) Test acc. (OOD)

80k 20k 160k 200k

(q) Training loss

-

40k 80K 120k 60k

(u) Test loss (IID w/o BG)

(
,
)

80k 120k 160k

(r) Test loss (IID)

f
2

20k 160k 200k

(v) Test loss (OOD)

ok

(s) Training acc.

(w) Test acc. (IID w/o BG)

k 80k 20k 160k

(t) Test acc. (IID)

A 120k 160k

(x) Test acc. (OOD)

Figure Al. Learning process of training ResNet-50 on a fixed dataset (blue) or non-repetitive samples (red). Note that (a-h), (i-p), and

(g-x) are for no, weak, and strong data augmentations respectively.

H. Other Implementation Details

Supervised Learning/Pre-training. For each backbone
in Sec. 4.1, all its layers up to the second last one are used
as the feature extractor and the neuron number of its last
FC layer is set as 10 to have the classifier. We use the co-
sine learning rate schedule: the learning rate is adjusted by
np = 0.57m0(1 4 cos(mp)), where p is the process of training
iterations normalized to be in [0, 1] and the initial learning
rate 179 = 0.01. The momentum, weight decay, and ran-
dom seed are set as 0.9, 0.0001, and 1 respectively. In light
of fairness, the final normalization operation uses the Ima-

geNet statistics consistently for all experiments.

Downstream Domain Adaptation. In domain adaptation
training, we use all labeled source samples and all unlabeled
target samples as the training data. In each base model,
the last FC layer is replaced with a new task-specific FC
layer as the classifier. We fine-tune the pre-trained layers
and train the new layer from scratch, where the learning
rate of the latter is 10 times that of the former. The learn-
ing rate is adjusted by 1, = 70(1 + ap)~?, where p de-
notes the training process of training epochs normalized to



(a) Fixed (b) Non-repetitive

(c) Fixed (d) Non-repetitive
Figure A2. Saliency maps of randomly selected IID test samples, obtained from the ResNet-50 trained on a fixed dataset or non-repetitive
samples with no data augmentation, at the 20-th, 200-th, 2K-th, 20K-th, and 200K-th training iterations. Note that rows 1 and 2 show input
gradients [56] and gradient weighted class activation maps [54] on input images respectively; the number on top of each picture means the
ground-truth (first column) or predicted labels (other columns).



(a) Fixed (b) Non-repetitive

(c) Fixed (d) Non-repetitive
Figure A3. Saliency maps of randomly selected IID test samples, obtained from the ViT-B trained on a fixed dataset or non-repetitive
samples with no data augmentation, at the 20-th, 200-th, 2K-th, 20K-th, and 200K-th training iterations. Note that rows 1 and 2 show input
gradients [56] and gradient weighted class activation maps [54] on input images respectively; the number on top of each picture means the
ground-truth (first column) or predicted labels (other columns).
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Figure A4. Attention maps [1] of randomly selected IID test samples, obtained from the ViT-B trained on a fixed dataset or non-repetitive
samples with no data augmentation, at the 20-th, 200-th, 2K-th, 20K-th, and 200K-th training iterations.

be in [0, 1], the initial learning rate 7o is 0.001 for MCD
and 0.0001 for other methods, « = 10, and 8 = 0.75.
The momentum, weight decay, and random seed are set
as 0.9, 0.0001, and O respectively. By convention, strong
and weak data augmentations are applied in pre-training and
domain adaptation respectively. For domain adaptation on
our proposed S2RDA benchmark, we use ResNet-50 as the
backbone, which is initialized by the official ImageNet pre-
trained checkpoint [23]. The initial learning rate is set as
0.0001 across all experiments. Other implementation de-
tails are the same as those described above.
More details are as follows.

1. For 3D rendering with domain randomization, the
monocular camera default in BlenderProc [14] is used
in the 3D renderer.

2. SubVisDA-10 includes the following 10 classes: air-
plane, bicycle, bus, car, knife, motorbike, plant, skate-
board, train, and truck.

3. MetaShift [40] we use is a filtered version of 2559865
images from 376 classes by running the officially pro-
vided code of dataset construction. It is formed by set-
ting a threshold for subset size (>= 25) and subset
number in one class (> 5).

4. Mean class precision is the average over recognition

precisions of all classes. It is an indicator of class im-
balance that different categories have different predic-
tion accuracy. When it deviates from the overall accu-
racy in a test, class imbalance happens.

. In Table 3, the number highlighted by the green color

indicates the best Acc. in each row (among all com-
pared DA methods), the number underlined by the red
color indicates the best Mean in each row (among all
compared DA methods), and the bold number in each
column indicates the best result among all considered
pre-training schemes. In Table 4, the bold number
highlighted by the green color indicates the best Acc.
in each row (among all compared DA methods), and
the bold number underlined by the red color indicates
the best Mean in each row (among all compared DA
methods).

. PyTorch [47] is used for implementation. Grid Search

is used for hyperparameter tuning. We use an 8-GPU
NVIDIA GeForce GTX 1080 and an 8-GPU NVIDIA
Tesla M40 to run experiments. For the used assets, we
have cited the corresponding references in the main
paper, and we mention their licenses here: CCTex-
tures under CCO License, Haven under CCO License,
ShapeNet under a custom license, VisDA-2017 under



(a) Fixed (b) Non-repetitive

(c) Fixed (d) Non-repetitive
Figure AS. Saliency maps of randomly selected IID test samples, obtained from the Mixer-B trained on a fixed dataset or non-repetitive
samples with no data augmentation, at the 20-th, 200-th, 2K-th, 20K-th, and 200K-th training iterations. Note that rows 1 and 2 show input
gradients [56] and gradient weighted class activation maps [54] on input images respectively; the number on top of each picture means the
ground-truth (first column) or predicted labels (other columns).
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Figure A6. Learning process of training various network architectures on non-repetitive samples with strong data augmentation. Note that
red, green, and blue indicate ResNet-50, ViT-B, and Mixer-B respectively.
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Figure A7. Learning process (Acc.) of domain adaptation when varying the pre-training scheme.

MIT License, ImageNet under a custom license, and
MetaShift under MIT License.

I. Other Related Works

Real Datasets. A lot of large-scale real datasets [13, 19,
32,40,41,51,57,58] have harnessed and organized the ex-
plosive image data from Internet or the real world for deep
learning of meaningful visual representations. For exam-
ple, ImageNet [13] is a large-scale database of images built
upon the backbone of the WordNet structure; ImageNet-1K,
consisting of 1.28M images from 1K common object cate-

gories, which serves as the primary dataset for pre-training
deep models for computer vision tasks. Barbu et al. [4]
collect a large real-world test set for more realistic object
recognition, ObjectNet, which has 50K images and is bias-
controlled. Ridnik et al. [51] dedicatedly preprocess the full
set of ImageNet — ImageNet-21K with the WordNet hier-
archical structure utilized, such that high-quality efficient
pre-training on the resulted ImageNet-21K-P (of 12M im-
ages) can be made for practical use. In [57], JFT-300M of
more than 375M noisy labels for 300M images is exploited
to study the effects of pre-training on current vision tasks.

200k
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Figure A8. Distribution of the number of images per class in each real domain of our proposed S2RDA.

Geirhos et al. [ 19] construct StylizedImageNet by replacing
the object texture in an image with a random painting style
via style transfer, to learn a shape-based representation. MS
COCO [41] has 328K images, where considerably more ob-
ject instances exist as compared to ImageNet, enabling deep
models to learn precise 2D localization. MetaShift [40]
of 2.56M natural images (~ 400 classes) is formed by
context guided clustering of the images from GQA [24],
a cleaned version of Visual Genome [33] connecting lan-
guage and vision. CCT-20 [5] and PACS [36] are designed
to measure recognition generalization to novel visual do-
mains. Some works [32, 58] leverage free, numerous web
data to benchmark or assist fine-grained recognition. Some
small datasets are used as benchmarks for semi-supervised
learning [ 1,34,44] or domain generalization [5, 36].

Data Manipulation. Deep models are hungry for more
training data in that the generalization ability often relies
on the quantity and diversity of training samples. To im-
prove model generalization with a limited set of training
data available, the cheapest and simplest way is data ma-
nipulation, which increases the sample diversity from two
different perspectives of data augmentation and data gener-
ation. The former applies a series of random image transfor-
mations [55] or appends adversarial examples at each iter-
ation [065]; the latter uses generative models to generate di-
verse and rich data such as Variational Auto-Encoder (VAE)
[50] and Generative Adversarial Network (GAN) [20] or

renders 3D object models into RGB images via domain ran-
domization [49, 62, 64].

Deep Models. Deep model has strong representational
capacity in that they can learn powerful, hierarchical rep-
resentations when trained on large amounts of data; they
can be highly scalable from various aspects of architectural
innovation, such as spatial exploitation, depth, multi-path,
width, feature-map exploitation, channel boosting, and at-
tention. Deep Convolutional Neural Networks (CNNs) have
been popularized for decades in a wide range of computer
vision tasks. A comprehensive survey for CNNs can be
found in [27]. The most commonly used CNN-based net-
work architecture is ResNet [23], which reformulates the
layers as learning residual functions concerning the layer in-
puts, instead of learning unreferenced functions. Recently,
some new types of network architectures have emerged,
such as ViT [15] and MLP-Mixer [63]. VIiT stacks a cer-
tain number of multi-head self-attention layers and is ap-
plied directly to sequences of fixed-size image patches.
MLP-Mixer is based exclusively on multi-layer perceptrons
(MLPs) and contains two types of MLP layers: one for mix-
ing channels in individual image patches and one for mixing
features across patches of different spatial locations. In this
work, we experiment on the three representative types of
networks.



Transfer Learning. There has been a huge literature in
the field of transfer learning [25,45,73], where the paradigm
of pre-training and then fine-tuning has made outstand-
ing achievements in many deep learning applications. Ex-
tensive studies have been done for supervised pre-training
[17,29-31, 67, 69]. For example, Yosinski et al. [69]
examine the transferability of features at different layers
along the network; the relationship between ImageNet ac-
curacy and transferability is evaluated in [31]; BiT [30]
provides a recipe of the minimal number of existing tricks
for pre-training and downstream transferring; in [67], an
MLP projector is added before the classifier to improve the
transferability; LOOK [17] solves the problem of overfit-
ting upstream tasks by only allowing nearest neighbors to
share the class label, in order to preserve the intra-class
semantic difference; particularly, Kin et al. [29] prelimi-
narily study the effects of pre-training on domain trans-
fer tasks, from the aspects of network architectures, size,
pre-training loss, and datasets. Another popular branch of
self-supervised learning is increasingly important for trans-
fer learning. Previous works have proposed various pre-
text tasks, such as image inpainting and jigsaw puzzle [26].
Recent works concentrate on self-supervised/unsupervised
pre-training [6-8,21,22,26,28,39] and have shown pow-
erful transferability on multiple downstream tasks, compa-
rable to supervised pre-training. They often rely on con-
trastive learning to learn visual representations of rich intra-
class diversity [70], e.g., contrasting feature embeddings
[6,8,21,22,28] or cluster assignments [7] of anchor, posi-
tive, and negative instances. Note that CDS [28] proposes
a second self-supervised pre-training stage using the unla-
beled downstream data from multiple domains, which ap-
plies instance discrimination not only in individual domains
but also across domains. Also, many researchers are de-
voted to improving fine-tuning by leveraging the pre-trained
ImageNet knowledge [9], using pre-training data for fine-
tuning [43], improving regularization and robustness [37],
adapting unfamiliar inputs [2], applying the easy two-step
strategy of linear probing and then full fine-tuning [35],
to name a few. Different from [29], we focus on the util-
ity of synthetic data and take the first step towards clear-
ing the cloud of mystery surrounding how different pre-
training schemes including synthetic data pre-training affect
the practical, large-scale synthetic-to-real adaptation.

Domain Adaptation. Domain adaptation is a developing
field with a huge diversity of approaches. A popular strat-
egy is to explicitly model and minimize the distribution shift
between the source and target domains [10,18,46,53,60,72],
such that the domain-invariant features can be learned and
thus the task classifier trained on the labeled source data can
well generalize to the unlabeled target domain. DANN [ 18]
aligns the source and target domains as a whole by domain-
adversarial training, i.e., reversing the signal from a domain

discriminator, but does not utilize the discriminative infor-
mation from the target domain. MCD [53] minimizes the
maximum prediction discrepancy between two task classi-
fiers to learn domain-invariant and class-discriminative fea-
tures. RCA [10] implements the domain-adversarial train-
ing based on a joint domain-category classifier to learn
class-level aligned features, i.e., invariant at correspond-
ing classes of the two domains. Differently, works of an-
other emerging strategy [12,42,59,61] take steps towards
implicit domain adaptation, without explicit feature align-
ment that could hurt the intrinsic discriminative structures
of target data. SRDC [59] uncovers the intrinsic target dis-
crimination via deep discriminative target clustering in both
the output and feature spaces with structural source regu-
larization hinging on the assumption of structural similarity
across domains. DisClusterDA [01] proposes a new clus-
tering objective for discriminative clustering of target data
with distilled informative source knowledge, based on a ro-
bust variant of entropy minimization, a soft Fisher-like cri-
terion, and the cluster ordering via centroid classification.
In this work, we consider these representative DA methods
for the empirical study, and broader introductions to the rich
literature are provided in [52, 68].

OOD Generalization. Out-of-distribution (OOD) gener-
alization, i.e., domain generalization, assumes the access to
single or multiple different but related domains and aims to
generalize the learned model to an unseen test domain. A
detailed review for recent advances in domain generaliza-
tion is presented in [66], which categorizes the popular al-
gorithms into three classes: data manipulation [50,65], rep-
resentation learning [16, 38], and learning strategy [3, 50].
For example, adversarial examples are generated to learn
robust models in [65]; a progressive domain expansion
subnetwork and a domain-invariant representation learn-
ing subnetwork are jointly learned to mutually benefit from
each other in [38]; Balaji et al. [3] adopt the meta-learning
strategy to learn a regularizer that the model trained on one
domain can well generalize to another domain.
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