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Setting Speed (sec. / image) # of Param. (M)

StyTr2 0.087 25.14
Ours-L1 0.024 10.75
Ours-L3 0.030 10.75
Ours-L5 0.038 10.75

Table 1. Comparisons on inference speed and number of param-
eters at different settings. StyTr2 adopts 3 Transformer layers by
default. For our method, L1/L3/L5 means using 1/3/5 Transformer
layers in the test time.

k 1 2 3 4

Lsty 3.389 2.661 2.384 1.811

Table 2. Impact of the number of inner optimization times k in the
meta training on the style loss in the fast adaptation.

In this document, we provide more experimental analy-
sis and results of the proposed meta style transformer (Mas-
ter) for controllable zero-shot and few-shot artistic style
transfer. We first compare our model with the existing
Transformer-based methods in terms of efficiency. Then,
we provide some qualitative analysis and ablation studies
to the meta training and fast adaptation algorithms. Finally,
we supplement more comparisons with more state-of-the-
art techniques, more zero-shot and few-shot style transfer
results, more examples of controlling the stylization via
stacking different numbers of Transformer layers, more re-
sults of text-guided style transfer, and more extensions.

*Equal contribution.
†Corresponding author.
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Figure 1. Impact of the number of fast adaptation iterations.

A. Efficiency

In this part, we compare the proposed Master model with
the state-of-the-art Transformer-based style transfer method
StyTr2 [3], in terms of inference speed and number of pa-
rameters. We experiment with stacking 1, 3, and 5 Trans-
former layers in the test time and comparisons at different
settings are shown in Tab. 1. Here, StyTr2 adopts 3 Trans-
former layers by default and comparisons are conducted
under 512 × 512 resolution. The speed is measured over
220 inference times and the same workstation with a Nvidia
3090 GPU is adopted as the platform for all settings.

Through the results, we can observe that the proposed
model can have more than 2× FPS compared with StyTr2,
even when the number of Transformer layers is 5. More-
over, since parameters are shared across different Trans-
former layers, the total number of parameters would not
increase with the increasing number of stacked layers and
it is always significantly less than that of StyTr2. Thus,
compared with existing Transformer-based models, Master
achieves superior quality and efficiency simultaneously.

B. Meta Training and Fast Adaptation

Meta Training. Alg. 1 of the main paper shows the
workflow of the meta training procedure, and the number
of inner optimization times k is a hyper-parameter. As a
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Figure 2. Few-shot stylization results under different base models:
Our Master, StyFormer, and StyTr2.
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Figure 3. More comparisons on text-guided style transfer with
Clipstyler.

meta learning algorithm, it requires k to be greater than 1.
Otherwise, it would be degraded into pretraining and fine-
tuning [11], which is essentially equivalent to the typical
training pipeline in arbitrary style transfer and is the setting
in our zero-shot style transfer. The larger the k is, the higher
order of optimization procedures in few-shot learning can
be learned, which may contribute to faster adaptation in the
few-shot stage. Results of Tab. 2, which show the average
style loss at the 10th iteration of fast adaptation, validate
this effect.
Fast Adaptation. We provide example results of different
numbers of fast adaptation iterations in Fig. 1. More local
and global style patterns are captured by our model with the
progress of fast adaptation, which suggests that our method
potentially supports user-customized level of stylization by
controlling the number of iterations during fast adaptation.
Specifically, in all our experiments, we adopt 100 as the
default number of iterations during the fast adaptation stage.

To further demonstrate the advantage of the Transformer
model, we change our base model from our architecture to
StyFormer and StyTr2 respectively and provide qualitative
examples by these base models in Fig. 2, as a supplement to
the training analysis in Fig. 7 of the main paper. We observe

that our model renders global and local style patterns better.

C. More Results
C.1. Full Comparison Results

In order to further demonstrate the advantages of our pro-
posed method, we provide more comparisons between our
results with those by more state-of-the-art methods, as a
supplement to Fig. 4 in the main paper. Here, there are
3 global transformation based methods (AdaIN [5], Lin-
ear style transfer [9], and MCCNet [1]), 1 patch swap
based method (Avatar-Net [15]), 3 attention based methods
(SANet [12], MANet [2], and AdaAttN [10]), 2 transformer
based methods (StyTr2 [3] and StyFromer [17]), 2 meta
learning based methods (MetaNet [14] and MetaStyle [18]),
and the per-style-per-model method by Johnson et al. [6].
The comparisons are shown in Fig. 7 and the conclusions
are consistent with those in the main paper:

• Global transformation based methods are not powerful
enough to capture local style details.

• The patch based method Avatar-Net distorts major
content structures heavily.

• Attention based methods are prone to either dirty tex-
tures, e.g., SANet and MANet, or shallow style pattern
migration, e.g., AdaAttN.

• Following the design of vanilla Transformer, similar
problems of dirty textures and content distortion also
exist in StyTr2, e.g., 4th, 5th, 6th, and 10th columns.
Moreover, without leveraging local transformation, its
performance on migration of local textures is not sat-
isfactory enough, e.g., 1st, 2nd, 3rd, 7th, 8th, 9th, and
11th columns.

• Compared with StyFormer, the local self-attention
mechanism in our model extracts and transfers style
patterns more sophisticatedly.

• It seems hard for MetaNet to be robustly adapted for a
style image in a few shots.

• Results by MetaStyle often demonstrate shallower
stylized effects compared with ours.

• Johnson et al. tends to fill content images with the
learned style textures, which may also distort content
structures. The similar effect also exists in the compar-
ison results with the seminal optimization-based solu-
tion by Gatys et al. [4] as shown in Fig. 5(c) and Tab. 3.

Our method addresses above problems by dedicated self
attention and cross-modality attention mechanisms with
learnable and dynamic scaling parameters, which lead to
more robust and vivid stylization results.



C.2. More Content-Style Pairs

To further illustrate the performance of our Master
model, we provide more content-style pairs in Fig. 8. In
each entry, upper and bottom images are results under zero-
shot and few-shot settings respectively. Here, 1 Trans-
former layer is adopted. These results better demonstrate
the robustness of our method to different kinds of content
and style images.

C.3. More Controllable Style Transfer Results

We provide more controllable style transfer results by us-
ing different numbers of stacked Transformer layers in the
inference time. As shown in Fig. 9, with more Transformer
layers executed, the degree of stylization increases in gen-
eral, where more intensive and vivid global and local style
patterns are migrated. Quantitatively, we visualize the ef-
fect of tuning the number of Transformer layers in Fig. 4,
which demonstrates that the trade-off between content loss
and style loss can be controlled by this factor.

C.4. More Text-Guided Style Transfer Results

As a supplement to Fig. 6 in the main manuscript, in
Fig. 3, we provide more qualitative comparison with Clip-
styler [8], the state-of-the-art text-guided style transfer tech-
nique based on the per-text-per-model fashion. The conclu-
sion is consistent with that in the main paper. We also vi-
sualize more pair-wise results of different texts and content
images in Fig. 10.

C.5. More Ablation Results

Architecture: We provide more ablation results to better
support the necessity of key designs in our Master model:
using learnable scaling parameters for cross-attention, re-
moving normalization in style encoder, and only updating
style encoder in the few-shot training stage. The results are
shown in Fig. 11, as a supplement to Fig. 6 in the main
paper. Through the results, we can observe:

• Vanilla Transformer without learnable scaling param-
eters tend to distort original content structures. Such
effects are obvious in background areas with less vari-
ation on textures.

• Using normalization in style encoder is harmful for
stylization effects, since second-order statistics re-
moved by the normalization contain important style in-
formation.

• Updating the whole model in the few-shot stage makes
the training more difficult and leads to inferior styliza-
tion effects, compared with the case of only updating
style encoder.
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Figure 4. Quantitative comparisons with StyTr2 under different
configurations of content weight.

Hyper-Parameter: For a fair comparison, we compare
with StyTr2 [3], the vanilla Transformer model for style
transfer, under the same configuration of loss function, i.e.,
the same content weight, denoted as λc. The default λc in
this paper is 1 while that in StyTr2 is 7, and the quantitative
results are shown in Tab.1 of the main paper. The results un-
der the same λc are provided in Fig. 4, where the superiority
of our method can be reflected more clearly.

Training Algorithm: Compared with MetaStyle [18], a
MAML-based few-shot style transfer method, our method
has two major differences: the training algorithm is based
on Reptile and the architecture is a novel Transformer
model. We provide a fine-grained ablation study in Fig. 5
and Tab. 3, both qualitatively and quantitatively, to reflect
the contribution of each component. In fact, both the model
and the algorithm make improvement: the Transformer
model mainly improves the stylization quality compared
with existing models while Reptile mainly improves the
training efficiency compared with MAML in MetaStyle. On
the one hand, as shown in Fig. 8 of the main paper, replac-
ing Master with vanilla Transformers would result in infe-
rior quantitative metrics. On the other hand, we tried using
MAML instead of Reptile before and found that it requires
more time for convergence: 3 days for MAML v.s. 5 hours
for Reptile. The computation of higher-order gradients in-
creases the training difficulty, which further results in infe-
rior performance as shown in Fig. 5(b) and Tab. 3. We also
include ArtFID [16], a recently proposed metric for artistic
style transfer, for better illustration.

Encoder: Our method adopts CLIP [13] to achieve text-
guided style transfer, which contains an image encoder and
text encoder. We use the image encoder for training and
adopt the text encoder for inference, leveraging the aligned
feature spaces of corresponding images and texts. In fact,
it is also feasible to use the CLIP image encoder for image
style transfer, rather than the Swin encoder by default. An
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Figure 5. More qualitative ablation studies.

example is shown in Fig. 5(d). Since CLIP only returns a
512-d feature vector for an image, it mainly transfers the
style globally and the performance on local details is infe-
rior. Thus, Swin is used for image style transfer by default.

Content-Distortion Problem: We provide a more spe-
cific example to illustrate the content-distortion problem by
the vanilla Transformer model. Assume that there are two
2-d content features: c1 = [0.5, 1] and c2 = [4, 1.5], two
style features: s1 = [3.5, 0] and s2 = [−5,−5]. Attention
scores after Softmax are close to 1 for both c1 and c2 to
s1, and are close to 0 for both c1 and c2 to s2. The trans-
ferred results with residual connection are cs1 = [4, 1] and
cs2 = [7.5, 1.5], and the cosine similarity between c1 and
c2 becomes 1 from 0.73. Thus, the original content-wise
similarity is distorted. In this case, re-scaling content fea-
tures by a factor larger than 1 may alleviate the drawback.
This factor is made learnable in this paper and the model is
provided with an opportunity to learn how to preserve the
similarity in training and convergence. The metric Lsim in
Eq. 9 quantifies this effect and experiments in Tab. 1 of the
main paper demonstrate the effectiveness of our solution.

Impact of Multiple Transformer Layers on Training
Convergence: One drawback of the vanilla Transformer
model in style transfer is that the multi-layer structure can
lead to difficult training convergence. As shown in Fig. 6,
with more layers adopted, the loss may converge more
slowly, and it even fails in the 5-layer case. There seems
to be a contradiction with the conclusion on the generative
model focusing on StyleGAN [7]: the model becomes more
robust with more parameters. In fact, instead of generating
new contents unconditionally in StyleGAN, style transfer
aims to preserve contents and migrate style patterns at the
same time. Stacking more layers in Transformer models
may increase the complexity of the transfer function and
tends to learn more abstract information. Thus, with more
layers, it becomes harder to preserve original content struc-
tures during training. Sharing parameters for different lay-
ers kills three birds with one stone: it makes a light-weight,
easy-to-train, and easy-to-control model.

C.6. More Extensions

Style Interpolation. Our model also supports style inter-
polation by conducting linear interpolation to a couple of
output features of our Style Transformer. Two examples are
shown in Fig. 12.

Lcont ↓ Lsty ↓ ArtFID↓
Gatys et al. 4.24 1.67 37.24

StyTr2 (Same λc) 4.96 1.25 40.49

MAML ZS 4.95 2.36 38.14
FS 4.80 0.79 34.47

Ours ZS 4.20 0.81 32.80
FS 4.24 0.79 32.70

Table 3. More quantitative ablation studies.
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Figure 6. Fine-grained ablation studies on the number of layers
used without parameter sharing to train a style transfer model.

Multi-Style Transfer. It is convenient for our method to
achieve multi-style transfer by simply send features of mul-
tiple style images to the style encoder of our Master model.
Results are shown in Fig. 13.
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Figure 7. Full comparison results as a supplement to Fig. 4 in the main paper. Zoom in for better details.
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Figure 8. More content-style pairs. Upper and bottom images of each entry are results under zero-shot and few-shot settings respectively.
Zoom in for better details.
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Figure 9. More controllable style transfer results by using different numbers of stacked Transformer layers in the test time.
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Figure 10. More content-text pairs for text-guided style transfer.
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Figure 11. More ablation results as a supplement to Fig. 7 in the main paper. Zoom in for better details.
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Figure 12. Two-style interpolation results. The content image and style images are shown on the two ends
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Figure 13. Results of multi-style transfer.
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