Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation Supplemental Materials

Yushun Tang^{1,2}, Ce Zhang¹, Heng Xu¹, Shuoshuo Chen¹, Jie Cheng², Luziwei Leng², Qinghai Guo^{2*}, Zhihai He^{1,3*}

¹Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China

²Advanced Computing and Storage Laboratory, Huawei Technologies Co., Ltd., Shenzhen, China

³Pengcheng Laboratory, Shenzhen, China

{tangys2022, zhangc2019, xuh2022, chenss2021}@mail.sustech.edu.cn {chengjie8, lengluziwei, guoqinghai}@huawei.com, hezh@sustech.edu.cn

In this Supplemental Material, we provide more details and experimental results for further understanding of the proposed Neuro-Modulated Hebbian learning algorithm.

1. More Details on the Hebbian Learning

In this section, we study the convergence of the proposed soft Hebbian learning algorithm. We begin from a generative probabilistic model, as defined in Nessler *et al.* [6], where we denote the observed data as $\boldsymbol{x} = (x_1, x_2, ..., x_n)$ and the hidden cause $\vartheta = \{C_1, ..., C_k\}$. The true distribution $p_t(x)$ is then calculated as

$$p_t(\mathbf{x}) = \prod_{i=1}^n (\sum_{k=1}^K p(x_i | C_k) p(C_k)).$$
(1)

To estimate this true distribution, we design an approximation distribution given weights \boldsymbol{w} . That is, $q(\boldsymbol{x}|\boldsymbol{w}) = \sum_{k=1}^{K} q(\boldsymbol{x}|C_k)q_0(C_k)$, with $q(\boldsymbol{x}) = \prod_{i=1}^{n} q(x_i)$ and $\forall k$,

$$q(x_i|C_k) = q(x_i|C_k, w_{ik}) := e^{w_{ik} \cdot x_i},$$
(2)

$$q_0(C_k) = q_0(C_k, w_{0k}) := e^{w_0 k}.$$
(3)

According to the above definition, we can find the optimal parameters w^* which minimize the KL-divergence of the generative model and the original input distribution. We then show it is possible to link the generative model to the activation function of a neural network, using the Hebbian rule defined in our main manuscript, the weights of the neural network will eventually converge to the optimal weights w^* that minimize the KL-divergence aforementioned.

To that end, according to Nessler *et al.* [6], it is shown that for each component k, the optimal parameter is proportional to the mean of the corresponding component of the

input distribution, that is

$$\boldsymbol{w}_k^* = c \cdot \mu_{p_k}(\boldsymbol{x}), \tag{4}$$

where $\mu_{p_k}(\boldsymbol{x})$ is the mean distribution p_k with $p_k = p(\boldsymbol{x}|C_k)$, and c is a positive factor. Given the cause C_k , the approximated distribution $q(\boldsymbol{x}|C_k)$ is then

$$q(\boldsymbol{x}|C_k) = \prod_{i=1}^{n} e^{w_{ik}x_i} = e^{u_k},$$
 (5)

where $u_k = \sum_{i=1}^n w_{ik} x_i$. Using the Bayesian rule, we derive the posterior probability as

$$q(C_k|\boldsymbol{x}) = \frac{q(\boldsymbol{x}|C_k)q_0(C_k)}{q(\boldsymbol{x})}$$
$$= \frac{e^{u_k + w_{0k}}}{\sum_l^K e^{u_l + w_{0l}}}.$$
(6)

It can be seen from (6) that the probabilistic model has a neural interpretation, where $q(C_k|\mathbf{x})$ can be described as the output neuron's exponential activation divided by its layer's total output, with w_{0k} as the bias term. We show that a soft Hebbian learning rule defined in the main manuscript has the equilibrium point $w_{ik} = w_{ik}^*$ with $c = \frac{\sqrt{R}}{\|\mu_{p_k}(\mathbf{x})\|}$, where R is the L2-norm of the weight vector w_k defined in the main manuscript. To see this, based on the plasticity rule as we defined in the main manuscript, we have

$$\begin{split} E[\Delta w_{ik}] =& \eta \int_{\boldsymbol{x}} y_k(\boldsymbol{x}) (Rx_i - u_k(\boldsymbol{x})w_{ik}) p(\boldsymbol{x}) d\boldsymbol{x} \\ =& \eta \int_{\boldsymbol{x}} y_k(\boldsymbol{x}) (Rx_i - u_k(\boldsymbol{x})w_{ik}) \\ & \left(\sum_{l=1}^K p_l(\boldsymbol{x}) p(C_l)\right) d\boldsymbol{x} \end{split}$$

^{*} Corresponding authors.

$$=\eta(\sum_{l=1}^{K}\int_{\boldsymbol{x}} Rx_{i}y_{k}(\boldsymbol{x})p_{l}(\boldsymbol{x})p(C_{l})d\boldsymbol{x}$$
$$-\sum_{l=1}^{K}\boldsymbol{w}_{k}w_{ik}\int_{\boldsymbol{x}}\boldsymbol{x}y_{k}(\boldsymbol{x})p_{l}(\boldsymbol{x})p(C_{l})d\boldsymbol{x})$$
$$=\eta(\int_{\boldsymbol{x}} Rx_{i}y_{k}(\boldsymbol{x})p_{k}(\boldsymbol{x})p(C_{k})d\boldsymbol{x}$$
$$-\boldsymbol{w}_{k}w_{ik}\int_{\boldsymbol{x}}\boldsymbol{x}y_{k}(\boldsymbol{x})p_{k}(\boldsymbol{x})p(C_{k})d\boldsymbol{x}),$$
(7)

where we assume the overlap of the support of the measure p_l and p_k can be neglected for $l \neq k$, and $p_l(\boldsymbol{x}) = p(\boldsymbol{x}|C_l)$. The first term can be written as

$$\int_{\boldsymbol{x}} Rx_i y_k(\boldsymbol{x}) p_k(\boldsymbol{x}) p(C_k) d\boldsymbol{x} = I_k \cdot R \cdot \mu_{p_k}(x_i), \quad (8)$$

where I_k is the normalization constant. The second term can be written as

$$w_k w_{ik} \int_{\boldsymbol{x}} \boldsymbol{x} y_k(\boldsymbol{x}) p_k(\boldsymbol{x}) p(C_k) d\boldsymbol{x}$$

= $I_k \cdot \boldsymbol{w}_k w_{ik} \mu_{p_k}(\boldsymbol{x})$
= $I_k \cdot R \cdot \mu_{p_k}(x_i).$ (9)

This leads to the conclusion of $E[\Delta w_{ik}] = 0$ given the optimal w defined in (4). The convergence follows the proof we showed in the main manuscript.

2. More Implementation Details

For the soft Hebbian layer, the weights are initialized with the source model. The norm R is setting to 1. The learning rate η is setting to 10^{-3} for the Hebbian layer and 5×10^{-4} for the Neuro-Modulation layer. All the results are the average of three times running with different random seeds based on *Pytorch*. All models are tested on a single NVIDIA Tesla A100 GPU. The algorithm pseudo-code is shown in Algorithm 1.

Algorithm 1	Pseudo co	ode of the	proposed a	lgorithm.
			proposed a	Borneitte

Input: Source pre-trained model Γ_{θ}^{s} ; target dataset \mathcal{X}_{t} . **Output**: The prediction of target samples.

- Initialize the testing model Γ^t_θ with source pre-trained model Γ^s_θ parameter weights;
- 2: for batch x_t in \mathcal{X}_t do
- 3: Update the Hebbian layer of Γ_{θ}^{t} with Hebbian learning rule: $\Delta w_{ik} = \eta y_k (Rx_i - u_k w_{ik});$
- 4: Update the Neuro-Modulation layer of Γ_{θ}^{t} with loss function *H*.
- 5: Output = $\Gamma_{\theta}^{t}(x_t)$
- 6: **end for**

Corruption Type	Abbreviation					
Gaussian Noise	gaus					
Shot Noise	shot					
Impulse Noise	impul					
Defocus Blur	defcs					
Glass Blur	gls					
Motion Blur	mtn					
Zoom Blur	zm					
Snow	snw					
Frost	frst					
Fog	fg					
Brightness	brt					
Contrast	cnt					
Elastic	els					
Pixelate	px					
JPEG Compression	jpg					

Table 1. Abbreviations of the 15 corruption types in CIFAR-10/100C and ImageNet-C datasets.

3. More Experimental Results

Table 1 summarized the abbreviations of the different corruption types. The performance results or classification errors of our algorithm in comparisons with existing methods for different levels of corruption are shown in Table 4, 5 and 6. In the main body of the paper, only the results for Level 5 corruption are reported. Our method outperforms almost all the comparison methods including TTT [9], NORM [8], TENT [10], and DUA [5] in all corruption severity levels and all corruption types. In addition, Figure 1 shows the prediction comparison in some target samples in MNIST [4], MNIST-M [1] and USPS [2] for an SVHN [7] pre-trained source model. Our method recognizes digits right but others are wrong in some cases. Figure 2 shows more feature map visualization after the first convolution layer obtained by different learning methods. We can see that the Hebbian learning is able to generate feature maps that are as good as those from the Oracle supervised by labels.

The parameter amount of our new model is the same as the source model. The testing time cost comparison is shown in Table 2, in which NHL is about 50% slower than TENT, but much faster (10-200 times) than DUA and TTT. We also investigate the effect of the temperature-scaling hyper-parameter τ in Eq. (6) in the main manuscript. As shown in Table 3, it does not affect the overall performance much in a range.

References

 Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In *ICML*, pages 1180–1189. PMLR, 2015. 2

Table 2. Testing time cost comparison for Gaussian corruption of **CIFAR-10C** [3].

Methods	Time
TENT [10]	7.67s
DUA [5]	187.32s
TTT [9]	2955.04s
Ours	11.60s

Table 3. Top-1 average Classification Error (%) in **ImageNet-C** at the highest severity (Level 5).

τ	Avg. Error
1	61.85
1/2	60.82
1/5	60.40
1/10	60.39
1/15	60.36
1/20	60.51

- [2] Jonathan J. Hull. A database for handwritten text recognition research. *IEEE TPAMI*, 16(5):550–554, 1994. 2
- [3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. *Master's thesis, University of Tront*, 2009. 3, 4
- [4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 2
- [5] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on: Dynamic unsupervised domain adaptation by normalization. In *CVPR*, pages 14765–14775, 2022. 2, 3
- [6] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. *PLoS Computational Biology*, 9(4):e1003037, 2013. 1
- [7] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011. 2
- [8] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. Improving robustness against common corruptions by covariate shift adaptation. In *NeurIPS*, volume 33, pages 11539–11551, 2020. 2
- [9] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time training with selfsupervision for generalization under distribution shifts. In *ICML*, volume 119, pages 9229–9248. PMLR, 2020. 2, 3
- [10] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time adaptation by entropy minimization. In *ICLR*, 2020. 2, 3

Figure 1. Prediction comparison in some target samples for an SVHN source model. The image with a red border means predicting wrong and green means predicting right. It shows that our NML method recognizes digits more accurately than NORM and TENT.

Source Domain		No.	N	×	-	-	4	0		3
Target Domain	4	×.		×			45	1		2
Source Model	E.			24	#		11 2			1
Hebbian Learning				X	4	-	W.		N.	Ē
Oracle	a.	No.	NĮ.	×	4		V.	9		
Source Domain	See.	6	1	1	rf i	-IIII-		S.C.	9	yar -
Source Domain Target Domain	Y Y		C C		rf4	<u>1</u>		Ge Ge	(a) (a)	
Source Domain Target Domain Source Model	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E.			rf'i Rf'i	1				
Source Domain Target Domain Source Model Hebbian Learning										

Figure 2. More feature map visualization of CIFAR-10C [3] after the first convolution layer obtained by different learning method. We can see that the unsupervised Hebbian learning is able to generate feature maps which are as good as those from the supervised learning ("Oracle"). It should be noted that the first row only shows the corresponding original image of the testing set but not the training set for the source model.

Methods	gaus	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Avg.
							Lev	vel 4								
Source	63.9	53.7	57.0	28.9	58.9	32.4	38.1	25.9	33.9	17.5	10.4	33.7	26.7	40.7	27.2	36.6
TTT	41.5	35.4	39.8	15.0	47.8	19.1	18.4	20.1	24.0	13.5	10.0	14.1	17.7	29.4	24.5	24.7
NORM	40.7	37.4	43.2	16.7	47.4	21.8	20.2	29.9	30.3	19.0	16.1	20.5	26.5	26.6	35.7	28.8
TENT	35.3	32.6	39.0	14.9	44.1	20.1	17.8	26.8	27.8	17.1	13.8	21.3	23.9	22.5	30.4	25.8
DUA	31.0	27.6	35.8	13.2	40.7	20.3	15.4	22.2	20.6	12.7	10.1	14.8	20.5	18.6	24.6	21.9
Ours	28.9	26.3	32.1	13.1	40.6	16.9	15.7	22.5	22.0	13.7	12.4	16.6	20.9	18.9	24.7	21.7
Source	67.4	54.7	59.9	22.6	56.8	25.2	29.7	19.5	29.5	10.4	7.2	16.4	21.1	39.7	25.9	32.4
NORM	24.9	21.0	29.5	8.9	34.5	11.6	9.7	16.4	14.5	8.7	7.1	9.0	15.6	13.9	23.9	16.6
TENT	22.2	18.1	26.0	8.5	31.0	11.1	9.6	15.8	13.9	8.5	7.2	8.0	14.8	12.4	21.3	15.2
DUA	24.4	20.8	28.9	9.3	35.6	12.3	10.5	16.4	13.7	8.0	6.4	8.8	15.1	13.7	23.0	16.5
Ours	21.2	17.0	24.3	8.0	30.5	10.9	9.5	15.1	13.1	8.4	6.6	7.7	14.5	12.3	20.7	14.7
Source	24.1	17.1	16.4	6.6	23.5	8.4	7.4	12.2	11.5	8.3	6.2	9.2	10.6	19.4	13.1	12.9
TENT	13.8	11.7	14.3	6.7	18.6	8.2	7.1	10.6	9.7	7.5	6.1	8.4	10.9	8.5	13.2	10.3
DUA	13.7	11.8	13.5	5.9	18.3	7.6	6.6	10.3	9.0	7.4	5.8	7.2	9.9	9.3	13.0	10.0
Ours	12.1	10.2	12.4	0.2	15.9	7.5	/.1	9.9	0.0	/.1	5.8	0.7	10.6	7.8	12.2	9.5
	I						Lev	vel 3								1
Source	58.0	47.5	38.5	17.7	46.2	32.8	30.6	22.7	31.8	12.6	9.5	19.3	20.7	23.7	24.7	29.1
TTT	37.2	31.6	28.6	11.5	35.8	19.1	15.8	17.8	23.3	11.0	9.1	11.6	14.3	18.9	22.3	20.5
NORM	37.8	35.1	34.7	14.1	38.2	21.7	18.2	27.5	29.0	16.6	15.2	18.6	19.6	21.1	33.3	25.4
DUA	33.1	29.7	30.7	12.4	35.1	20.3	15.9	24.3	25.7	15.2	13.0	18.1	17.5	17.5	29.8	22.5
Ours	28.5	24.0	27.0	10.4	30.7 20 5	20.2 17 1	14.4	20.4	19.5	12.3	9.2	12.3	14.0	15.1	23.1	10.7
Ours	27.0	23.3	23.1	10.7	27.5	1/.1	13.4	20.2	22.5	12.3	11.1	15.5	13.4	15.5	23.2	10.5
Source	60.8	46.5	42.6	11.0	43.1	25.6	22.5	16.4	27.4	7.7	6.2	10.3	14.1	20.0	22.0	25.1
NORM	22.2	18.7	20.7	6.7	23.9	11.5	8.6	13.9	14.0	7.1	6.5	7.8	9.9	9.9	21.1	13.5
TENT	20.1	16.9	18.1	6.7	22.0	11.2	8.3	12.7	13.5	6.9	6.5	7.1	9.5	9.4	18.2	12.5
DUA	20.8	1/./	20.1	6.9	23.3	12.4	9.5	13.9	14.0	0.0	6.1	7./	10.0	10.1	19.1	13.2
Ours	19.5	10.5	17.1	0.0	12.0	10.0	0.5	12.3	12.9	/.1	0.5	7.0	9.5	9.7	17.0	12.1
Source	20.4	14.6	9.7	5.4	12.9	8.6	6.5	9.9	11.4	6.3	5.5	7.2	7.4	9.6	12.1	9.8
IENI	12.0	10.4	10.4	6.0 5.5	12.7	8.1	6./	9.5	9.1	6./	5.9	1.5	8.4	1.5	12.7	8.9
Ours	12.2	95	9.5	5.5	11.9	7.8	6.6	9.1	9.1	6 .1	5.4	0.5 6.1	7.0	7.4	11.7	0.4 8 1
Ours	11.4	7.5),2	5.5	11.1	7.5	0.0		0.4	0.4	5.0	0.1	7.0	1.5	11.5	0.1
			• • •		10.7					10.0	~ -					
Source	43.1	27.8	29.3	10.2	49.5	23.4	22.4	26.4	21.3	10.3	8.7	13.4	14.7	17.9	22.3	22.7
TTT NODM	28.8	20.7	23.0	9.0 12.5	36.6	15.4	13.1	20.2	16.9	9.2	8.3	10.2	12.5	14.8	19.7	17.2
NOKM	31.0	25.3	28.7	13.5	38.8	18.8	16.3	27.8	23.9	15.4	14.0	1/.1	18.7	19.6	30.6	22.7
	20.5	21.2	23.1	0.2	34.1 30.3	16.0	14.1	24.5	20.7 15 7	15.4	12.2	10.4	10.2	10.5	20.7	19.7
Ours	22.3	10.8 16.6	19.5	10.6	29.1	14.5	12.7	19.3	17.2	11.3	10.7	12.2	14.6	14.1	20.8	16.4
Course	42.1	24.2	21.0	6.6	44.2	16.0	15.5	10.6	16.5	6.4	5.6	7.0	0.0	14.0	20.2	107
NOPM	42.1	24.5 12.2	51.U 15.0	0.0	44.5 24 4	10.2	13.3 7.6	19.0 14.0	10.3 11.0	0.4	5.0 6.2	7.0 71	9.8 8 0	14.U 0.1	20.5 10.2	10./
TENT	1/.0	12.3	13.9	6.5	24.4 22.1	9.J Q Q	7.0 75	14.2	10.6	65	63	65	0.9 8 6	7.1 8.6	19.5	100
DUA	15.4	11.0	157	61	22.1	10.5	83	13.7	10.0	5.9	57	67	8.6	93	18.4	11.9
Ours	14.7	10.4	13.9	6.3	20.8	9.4	7.5	12.2	10.6	6.4	6.1	6.7	8.5	8.5	16.7	10.6
Source	13.4	8.8	8.0	51	14.2	6.5	5.8	92	85	53	53	61	6.5	7.8	10.9	81
TENT	10.2	7.6	8.6	59	13.0	7.2	6.2	8.1	7.8	63	5.8	69	75	7.0	11.9	8.0
	10.2		0.0	5.7	10.0			0.1	,.0	0.5	2.0	0.7	,	7.0	11.0	0.0
						CON	unued o	on next	page							

Table 4. Error (%) for each corruption in **CIFAR-10C** severity (Level 1–4) is reported. For TENT and DUA, we use the **ResNet-26** (top), **WRN-28-10** (middle) and **WRN-40-2** (bottom) from their official implementation. Lowest error is highlighted for each corruption.

Methods	gaus	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Avg.
DUA	10.0	7.5	7.6	5.1	12.4	6.4	5.7	8.3	7.3	5.2	5.2	5.7	6.4	6.8	10.9	7.4
Ours	9.1	7.5	7.6	5.5	11.3	7.0	6.3	7.6	7.3	5.9	5.4	5.7	7.1	6.9	10.4	7.4
Level 1																
Source	25.8	18.4	19.0	8.5	51.1	14.7	18.2	15.0	13.8	8.3	8.3	8.7	14.4	11.3	16.5	16.8
TTT	19.1	15.8	16.5	8.0	37.9	11.7	12.2	12.8	11.9	8.2	8.0	8.3	12.6	11.1	15.5	14.0
NORM	24.0	20.9	22.5	13.4	38.1	16.5	15.5	20.5	18.8	14.9	14.0	15.3	19.1	16.9	24.7	19.7
TENT	20.7	18.0	19.1	11.8	35.0	14.6	13.7	17.5	16.4	12.6	11.8	13.8	16.7	14.5	20.9	17.1
DUA	16.5	13.8	16.6	8.3	30.4	12.4	12.6	14.5	12.2	8.4	8.4	8.8	13.4	11.0	15.9	13.6
Ours	16.4	14.1	15.2	10.4	28.9	12.8	12.3	14.8	13.8	10.9	10.5	11.1	14.3	12.4	17.4	14.4
Source	22.2	15.0	17.1	5.4	46.6	9.7	12.3	10.1	10.5	5.5	5.3	5.7	9.5	8.1	13.6	13.1
NORM	11.7	9.9	11.2	6.0	23.9	7.7	7.9	9.4	8.3	6.0	6.0	6.2	9.2	7.8	13.2	9.6
TENT	11.0	8.8	10.7	6.2	21.4	7.5	7.6	8.8	8.2	5.8	6.3	5.9	8.7	7.8	12.7	9.2
DUA	11.8	8.7	11.4	5.5	23.2	7.9	8.5	9.3	8.2	5.5	5.4	5.6	9.0	7.5	12.8	9.4
Ours	10.5	8.7	9.8	6.0	20.7	7.6	7.6	8.5	7.8	5.8	6.0	6.1	8.9	7.5	12.2	8.9
Source	8.7	6.5	6.2	4.9	14.1	5.5	5.9	6.4	6.5	4.9	5.0	5.0	6.9	5.8	8.7	6.7
TENT	7.5	6.9	7.2	5.7	12.4	6.2	6.3	6.8	6.5	5.9	5.7	6.0	7.9	6.5	9.1	7.1
DUA	7.3	6.2	6.2	5.1	11.9	5.5	5.8	6.2	6.1	5.1	5.1	5.1	7.0	5.8	8.5	6.5
Ours	6.8	6.4	6.5	5.4	11.3	5.9	5.8	6.1	6.0	5.2	5.3	5.3	7.3	6.0	8.3	6.5

Table 5. Error (%) for each corruption in **CIFAR-100C** severity (Level 1–4) is reported. Source refers to results obtained from a model trained on clean train set and tested on corrupted test sets. For TENT and DUA, we use the **WRN-40-2** from their official implementation. Lowest error is highlighted for each corruption.

Methods	gaus	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Avg.
							Le	vel 4								
Source	60.7	51.6	47.9	27.1	54.4	30.3	28.9	37.4	39.0	35.4	27.2	35.9	34.4	39.0	40.1	39.3
NORM	42.6	39.9	41.6	29.2	45.9	31.4	30.9	38.0	35.2	36.0	28.1	31.7	35.7	32.6	41.9	36.1
TENT	38.9	36.3	36.6	27.3	42.0	28.9	28.4	34.8	32.8	32.1	26.3	29.8	33.3	29.9	38.4	33.1
DUA	43.0	39.0	37.9	26.9	44.7	29.5	28.3	36.5	34.3	33.8	26.6	31.0	33.8	31.0	38.9	34.3
Ours	36.8	33.9	32.4	26.3	39.8	28.1	27.8	32.4	30.9	30.4	25.4	27.6	33.0	27.8	36.8	31.3
Level 3																
Source	55.2	45.9	36.9	25.7	39.9	30.5	27.4	33.3	38.1	29.5	25.5	30.5	28.6	30.3	38.0	34.4
NORM	40.7	37.7	35.6	28.2	38.7	31.3	29.9	35.1	35.4	32.4	27.6	30.5	31.7	30.5	40.4	33.7
TENT	37.1	34.3	32.0	26.1	34.6	29.2	27.7	32.3	32.3	29.0	25.6	28.4	29.2	28.3	37.4	30.9
DUA	40.8	36.5	32.2	25.3	37.0	29.6	27.1	32.7	34.4	29.0	25.2	28.6	28.4	28.7	37.3	31.5
Ours	35.3	32.5	28.9	25.2	33.5	27.8	26.4	30.0	30.6	27.9	24.8	26.5	28.8	26.8	35.7	29.4
							Lev	vel 2								
Source	44.6	34.5	30.7	24.3	41.5	27.7	26.2	32.7	31.8	26.8	24.4	27.5	27.9	28.0	36.5	31.0
NORM	36.2	32.3	32.2	27.6	38.0	29.5	29.2	33.2	32.6	29.6	27.5	29.5	31.4	30.5	38.7	31.9
TENT	33.3	29.5	28.8	25.7	34.9	27.4	27.0	30.6	29.6	27.0	25.4	27.3	29.1	27.6	36.3	29.3
DUA	35.9	31.2	28.8	24.1	36.9	27.2	26.0	32.2	30.9	26.1	24.0	26.6	27.9	27.6	35.9	29.4
Ours	31.9	28.3	27.3	24.9	33.3	26.3	26.1	28.8	28.4	26.2	24.5	25.9	28.3	26.5	34.5	28.1
							Le	vel 1								
Source	34.4	29.6	26.9	23.8	42.9	25.6	26.1	26.1	27.4	24.0	23.8	24.3	28.4	25.2	32.4	28.1
NORM	32.2	30.5	29.3	27.3	37.7	28.3	28.7	29.4	29.8	27.6	27.5	27.9	32.3	29.0	35.2	30.2
TENT	29.3	27.6	26.9	25.5	34.7	26.6	26.7	27.0	27.3	25.6	25.2	26.0	29.8	26.7	32.9	27.9
DUA	31.2	28.5	26.4	23.8	36.9	25.3	25.9	26.2	27.1	24.1	23.9	23.9	28.6	25.4	32.0	27.3
Ours	28.1	26.9	25.9	24.6	33.1	25.8	25.6	25.9	26.5	24.6	24.5	25.2	29.4	25.9	31.2	26.9

Table 6. Error (%) for each corruption in **ImageNet-C** severity (Level 1–4) is reported. Source refers to results obtained from a model pre-trained on ImageNet and tested on corrupted test sets. For TENT and DUA, we use the **ResNet-18** from the RobustBench. Lowest error is highlighted for each corruption.

Methods	gaus	shot	impul	defcs	gls	mtn	zm	snw	frst	fg	brt	cnt	els	px	jpg	Avg.
							Le	vel 4								
Source	92.8	93.5	96.0	90.2	82.0	85.9	78.6	86.8	87.8	99.1	65.7	99.5	56.2	57.2	52.5	81.6
TTT	64.5	68.2	70.6	84.5	68.7	69.7	64.7	81.4	72.8	94.8	48.5	98.8	49.5	49.1	47.1	68.9
NORM	59.3	61.2	60.0	65.6	59.1	61.1	58.9	66.5	62.8	69.2	53.4	72.3	51.1	51.3	51.2	60.2
TENT	58.2	58.8	58.5	66.0	59.4	59.4	60.6	60.2	61.8	59.7	52.7	91.4	51.9	51.9	51.9	60.2
DUA	66.0	67.8	66.2	86.1	71.3	78.0	71.2	78.7	73.7	80.8	57.1	99.2	53.7	55.8	51.8	70.5
Ours	53.8	54.0	53.7	64.1	58.4	58.0	59.0	59.1	60.6	60.4	51.2	67.3	50.3	51.1	50.7	56.8
Level 3																
Source	78.9	80.5	85.2	85.4	76.5	77.8	75.7	77.3	86.2	98.8	56.7	98.9	53.9	54.1	51.4	75.8
TTT	57.2	55.8	58.0	76.8	60.9	61.9	61.1	70.8	70.3	93.7	43.4	96.9	48.4	46.3	43.8	63.0
NORM	55.2	55.7	56.9	59.4	56.1	55.3	56.4	60.5	62.1	67.2	51.2	60.2	50.5	50.5	50.8	56.5
TENT	54.6	54.5	55.5	59.8	57.0	56.2	58.5	56.5	61.1	59.3	51.2	71.6	51.2	50.9	51.3	56.6
DUA	60.6	61.5	61.7	78.5	67.1	69.4	68.9	70.4	72.4	79.5	53.1	94.4	52.2	53.4	51.0	66.3
Ours	51.3	51.0	52.2	57.3	56.0	54.8	56.9	55.5	60.3	59.2	49.4	59.2	49.3	49.9	50.0	54.2
							Le	vel 2								
Source	61.9	66.5	75.1	76.2	68.8	68.3	70.4	73.7	77.0	96.7	51.6	95.4	71.5	52.4	51.0	70.4
TTT	51.8	49.6	52.7	66.5	56.3	54.0	56.8	65.4	67.0	87.6	41.4	87.8	60.7	44.2	43.5	59.0
NORM	52.0	52.6	55.7	54.0	52.3	52.4	54.1	56,4	57.4	62.0	50.0	55.9	68.7	50.0	50.3	54.9
TENT	52.1	52.7	54.1	54.6	53.5	52.6	55.3	54.7	57.3	57.4	50.7	59.5	70.4	50.9	51.4	55.2
DUA	54.6	56.6	58.6	67.6	61.3	62.4	64.3	66.3	65.7	73.6	50.3	83.1	70.8	51.6	50.4	62.5
Ours	49.5	50.1	51.4	52.8	51.8	51.7	53.8	53.2	55.8	56.8	48.9	54.8	66.3	48.8	49.3	53.0
							Le	vel 1								
Source	51.8	53.7	60.4	69.3	61.1	60.1	65.0	60.1	59.4	91.0	49.1	84.9	56.3	51.6	50.5	61.6
TTT	44.4	45.1	49.0	58.2	47.2	52.7	53.5	53.1	48.8	78.0	40.9	72.1	49.0	49.2	49.6	52.7
NORM	50.6	50.6	53.6	52.1	50.9	50.6	52.9	53.0	52.3	57.3	49.8	53.3	54.4	49.7	50.1	52.1
TENT	51.5	51.2	52.4	52.7	51.6	51.3	53.9	52.4	53.0	55.4	50.0	56.1	55.1	50.3	50.4	52.5
DUA	50.3	51.6	54.1	61.5	57.7	57.0	61.5	56.6	54.5	67.6	48.9	74.0	55.2	51.1	50.2	56.8
Ours	49.0	49.1	50.5	51.5	49.9	50.2	52.0	51.0	50.8	54.7	48.4	52.8	52.4	48.9	49.0	50.7