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A. Additional implementation details
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Figure 1. The PSNR/SSIM values with respect to the values of different hyperparameters on simulated data Cameraman blurred by Motion
(20, 10) and the inaccurate kernel Motion (20, 20) as the input.

• Network structures. In Section 4.2, we compared the customized U-Net with FCN and the standard U-Net in esti-
mating the residual induced by the kernel error. U-Net and FCN are widely used in deep learning methods [2, 13].The
customized U-Net replaces the sigmoid activation with a soft-shrinkage activation. The sigmoid which easily causes
gradient vanishing problem and is more computationally extensive, which is verified in WGAN [1]. The FCN has a
hidden layer of 200 nodes and an input/output layer of nodes with the same size of the input image.

• Model hyperparameters setting. The model hyperparameters of the proposed method are {λi}3i=1 and L. In all
experiments, we empirically fix L = 3. Then {λi}3i=1 are tuned to obtain the best PSNR value. To comprehensively
investigate the influences of different model hyperparameters, we conduct experiments (see Figure 1) on the simulated
data Cameraman blurred by Motion (20, 10) and the inaccurate kernel Motion (20, 20) as the input. Based on the



best PSNR/SSIM values shown in Figure 1, λ1, λ2, λ3 are finally determined to be 5 × 10−2, 5 × 10−5, 5 × 10−7,
respectively.

To circumvent the adversity of convolution in the spatial domain and save computational cost, we transform the kernel
k and image x into frequency with fast Fourier transform (FFT) in practical implementation. In this case, the convolution
process can be reformulated as

k ⊗ x = F−1 (F (k)�F (x)) , (1)

in which F and � respectively represent operators of FFT and Hadamard product.
The true residual rgt = ∆k ⊗ x is obtained by the following formulation:

rgt = y − k̂ ⊗ x (2)

where y is the blurry image, k̂ is the inaccurate kernel and x is the clean image.

B. Test images as wild dataset
In the simulated experiments exploring the influence of different combination of priors in our model and the robustness

to kernel error, we use 8 sharp images (see Figure 2) and 3 typical blur kernels (see Figure 3) to generate blurry images as
toy dataset. By varying the parameter of the kernel, we can obtain a series of inaccurate kernels. For instance, let the Motion
(20,10) (a motion blur with 20 pixels of length and 10◦ orientations) be the true kernel, then a series of inaccurate kernels can
be set as Motion(5,10), Motion(10,10), Motion(15,10), Motion(25,10), Motion(30,10) (i.e. bias of length varies from -15 to
15 with a stride of 5.)
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Figure 2. Sharp images used for specialized blur dataset.

(a) Motion (b) Gaussian (c) Defocus

Figure 3. Examples of the 3 typical kernels.



C. Failure case
Due to its better robustness to kernel error, the proposed method generally delivers better results as compared with Fang

et al. [5]. More specifically, for Levin et al.’s dataset the proposed method achieves a performance gain of +0.74 dB , with
the highest gain of +2.65 dB and the lowest gain of +0.16 dB. For Lai et al.’s dataset, there is an average gain of +0.53 dB,
with the highest gain of +1.28 dB and the lowest gain of −0.22 dB. This indicates there are still some failure cases, e.g., text
image in Figure 4. The underlying reason may be that the deep prior and sparse prior are not suitable for the text image.

Blurry Fang et al. [5] Ours Ground truth
PSNR 14.15 PSNR 23.01 PSNR 22.79 PSNR Inf

Figure 4. Visual comparison for a text image from Lai et al. [8].

D. Additional visualization on different network architectures for DRP
To further validate the effectiveness of the customized U-Net for DRP as compared to U-Net, we present more results over

different blurs and images by using these two architectures.
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Figure 5. The comparison of U-Net and the customized U-Net for DRP. Row 1: the deblurred results of image ’natural05’ from the dataset
of Lai et al. [9]. Row 2: the estimated residuals. The input kernel for deblurring is estimated by the method in [4].
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Figure 6. The comparison of U-Net and the customized U-Net for DRP. Row 1: the deblurred results of image ’natural01’ from the dataset
of Lai et al. [9]. Row 2: the estimated residuals. The input kernel for deblurring is estimated by the method in [4].
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Figure 7. The comparison of U-Net and the customized U-Net for DRP. Row 1: the deblurred results of image ’people03’ from the dataset
of Lai et al. [8]. Row 2: the estimated residuals. The input kernel for deblurring is estimated by the method in [4].
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Figure 8. The comparison of U-Net and the customized U-Net for DRP. Row 1: the deblurred results of image ’saturated01’ from the
dataset of Lai et al. [8]. Row 2: the estimated residuals. The input kernel for deblurring is estimated by the method in [4].

Blurry

True Res. U-Net The custmoized U-Net

Figure 9. The comparison of U-Net and the customized U-Net for DRP. Row 1: the deblurred results of image ’cameraman’. Row 2: the
estimated residuals. The input inaccurate kernel is Motion (20,20), and the true kernel is Motion (20,10).
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Figure 10. The comparison of U-Net and the customized U-Net for DRP. the deblurred results of real image ’outdoor’ from the dataset of
Lai et al. [8]. (a) Blurry image; (b) deblurred reuslt by using U-Net for DRP; (c) deblurred reuslt by using the customized U-Net for DRP;
(d) estimated residual by U-Net; (e) estimated residual by the customized U-Net.
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Figure 11. The comparison of U-Net and the customized U-Net for DRP. the deblurred results of real image ’harubang’ from the dataset of
Lai et al. [8]. (a) Blurry image; (b) deblurred reuslt by using U-Net for DRP; (c) deblurred reuslt by using the customized U-Net for DRP;
(d) estimated residual by U-Net; (e) estimated residual by the customized U-Net.

E. Additional visual comparison of deblurred results over real images
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Figure 12. The deblurred results by different methods over the real image ’cairo1979’ from the dataset of Lai et al. [8]. The kernel is
estimated by the method in [4].
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Figure 13. The deblurred results by different methods over the real image ’boat1’ from the dataset of Lai et al. [8]. The kernel is estimated
by the method in [3].
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Figure 14. The deblurred results by different methods over the real image ’outdoor’ from the dataset of Lai et al. [8]. The kernel is
estimated by the method in [11].
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Figure 15. The deblurred results by different methods over the real image ’istanbul’ from the dataset of Lai et al. [8]. The kernel is
estimated by the method in [11].
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Figure 16. The deblurred results by different methods over the real image ’roma’ from the dataset of Lai et al. [8]. The kernel is estimated
by the method in [10].
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