
A. Implementation Details

A.1. Model Implementation

Text encoder. We adopt the Contrastive Language–Image
Pre-training (CLIP) [31] model as the text encoder through-
out, which supports variable-length text labels by design.
The pre-trained and frozen CLIP-ViT-B/32 model was used,
which produces a 512-dimensional embedding vector for
each text label. In this paper, we simply use the class names
(mostly containing 1 or 2 words, e.g., person, traffic sign)
defined in the datasets.
Type-I (SegFormer). We adopt the SegFormer [39] im-
plementation in the MMSegmentation [47] codebase to
perform whole-to-part segmentation for Type-I requests.
Nota that SegFormer can be freely replaced by any other vi-
sual feature extractors. We additionally provide an illustra-
tion of generating language-based queries and performing
vision-language interaction for Type-I requests, as shown in
Figure 8. SegFormer uses a series of Mix Transformer en-
coders (MiT) with different sizes as the visual backbones.
In this paper, we mainly adopt the lightweight model (MiT-
B0) for fast development and the largest model (MiT-B5)
towards better performance. The output feature maps have
512 channels, which can be directly interacted with the
text embedding vectors. We additionally apply a projection
module (four fully-connected layers) on the text features for
better feature alignment. Note that the categorical logits af-
ter vision-language feature interaction is usually divided by
a temperature parameter ⌧ , uw,h = (E> · fw,h)/⌧ , where ⌧

controls the concentration level of the distribution [20, 31].
We follow CLIP to set ⌧ as a learnable parameter, which is
initialize to be 0.07 in the start of the training stage.
Type-II (CondInst). We adopt the CondInst [35] imple-
mentation in the AdelaiDet [51] codebase to perform in-
stance segmentation. Nota that CondInst can also be re-
placed by other instance segmentation models (e.g., Mask
R-CNN [12] or SOLOv2 [53]) with marginal modifica-
tion. CondInst treats all feature locations on multiple fea-
ture pyramids as instance proposals, which is naturally com-
patible with the design of the probing-based inference. We
additionally provide an illustration of how Type-II requests
are processed with CondInst, as shown in Figure 9. Since
the output feature maps (from the last layer of classification
branch) have 256 channels, we apply a linear projection to
transform the dimension of text embedding from 512 to 256

to perform feature interaction. We mainly adopt ResNet-
50 as the visual backbone of CondInst. We empirically
observed that the results were improved slightly (⇠ 0.3%

mAP) with a larger backbone, ResNet-101 – we conjecture
that the limited improvement lies in the small dataset size
of CPP and ADE20K. In addition, we observed that the in-
stance segmentation model is more sensitive to the choice
of ⌧ . For example, using ⌧ = 0.07 leads to sub-optimal re-
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Figure 8. An illustration of generating language-based queries and
performing vision-language interaction for Type-I requests (the
case of one pixel is plotted for simplicity). The visual feature vec-
tor and the text embedding have the same dimension (e.g., 512).
The input text labels can be freely replaced by any texts of arbi-
trary length. See the main texts for more details.
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Figure 9. An illustration of how Type-II requests are processed
with CondInst. The probe is sampled (or clicked by user) from
the semantic region of current recognition result, aiming at seg-
menting the instance that occupies this probe. The filter is used to
select the spatially related anchors (or named proposals) by the po-
sitional embedding pk (equivalents to probe coordinates in our im-
plementation), and the preserved anchors are used for subsequent
prediction. Prediction with the highest categorical score (obtained
by inner-product with text embedding) is chosen as the final result.
See the main texts for more details.

sults. We empirically found that setting ⌧ = 1.0 and adding
a learnable bias term (partially following GLIP [22]) works
consistently better.

A.2. Model Optimization
For Type-I requests, we almost follow the same training

protocol as SegFormer, except that classes of different se-
mantic levels (e.g., objects, object parts, parts of parts) are
jointly trained in one model (see Figure 3). The MiT en-
coder was pre-trained on Imagenet-1K and the decoder was
randomly initialized. For data augmentation, random re-
sizing with ratio of 0.5 ⇠ 2.0, random horizontal flipping,
and random cropping (1024⇥ 1024 for CPP and 512⇥ 512

for ADE20K) were applied. The model was trained with



Figure 10. Illustration of sampling probes with stride (e.g., 16).

Table 5. Non-probing-based instance segmentation results w.r.t.
different strides.

AP (%)
Non-Probing (w.r.t. stride)
1 8 16 32

w/o 37.8 37.8 36.8 33.6
w/ mask samp. 38.5 38.5 37.8 35.1

AdamW optimizer for 160K iterations on 8 NVIDIA Tesla
V100 GPUs. The initial learning rate is 0.00006 and de-
cayed using the poly learning rate policy with the power of
1.0. The batch size is 8 for CPP and 16 for ADE20K.

For Type-II requests, since CondInst [35] have not re-
ported results on Cityscapes and ADE20K, we implemented
by ourselves. Due to the small dataset size, we initialized
the model with the MS-COCO [25] pre-trained CondInst,
which increases the results by about 1% AP. The model
was trained with SGD optimizer on 8 NVIDIA Tesla V100
GPUs. For CPP, we used the same training configurations
as Mask R-CNN on Cityscapes [54] and the model was
trained for 24K iterations with the batch size of 8. For
ADE20K, the maximum number of proposals sampled dur-
ing training was increased from 500 to 1,000 since more in-
stances appeared in an image than MS-COCO. The model
was trained for 40K iterations with the initial learning rate
being 0.01 and decayed at 30K iterations. During training,
random resizing with ratio of 0.5 ⇠ 2.0 and random crop-
ping (640⇥640) were applied. Other configurations are the
same as the original CondInst.

A.3. Non-Probing Segmentation
The non-probing-based inference is used to fairly com-

pare against the conventional instance segmentation ap-
proaches, i.e., finding all instances at once. For this pur-
pose, we densely sample a set of probing pixels based on
the semantic segmentation results. Specifically, we regu-
larly sample points with a fixed stride in the whole image,
and keep the points inside the corresponding semantic re-
gions, as illustrated in Figure 10 (white dots indicate the
sampled probes). Each sampled point is viewed as a probing
pixel to produce a candidate instance prediction (see Ap-
pendix A.4 and Figure 9 for details). Finally, the results are
filtered with NMS (using a threshold of 0.6 as the same as
CondInst). Intuitively, the above procedure can be viewed
as an improved CondInst by replacing the builtin classifica-

tion branch as a standalone pixel-wise classification model.
We present the results with respect to different strides in Ta-
ble 5. As shown, the denser the sampled probes, the higher
the mask AP. In addition, enabling mask sampling during
training further improves the results (see Appendix A.4 for
details of mask sampling). We mainly use the stride of 16
in experiments.

A.4. Probing Segmentation
The probing-based inference, a more flexible setting, is

used to simulate the user click to place a probing pixel that
lies within the intersection of the predicted semantic region
and the ground-truth instance region – if the intersection
is empty, the instance is lost (i.e., IoU is 0%). Specif-
ically, we first compute the mass center (amass, bmass)

and the bounding box B = (a0, b0, a1, b1) of the inter-
section region. The actual sampling bounding box B̂ =

(â0, b̂0, â1, b̂1) is determined by a hyper-parameter � 2
[0, 1], which controls the centerness of the probing pixels:

â0 = amass � �(amass � a0),

â1 = amass + �(a1 � amass),

b̂0 = bmass � �(bmass � b0),

b̂1 = bmass + �(b1 � bmass).

(2)

The probe is randomly sampled from the intersection of B̂
and the original sampling region. If no candidate pixel lies
in that region (since the mass center may outside the in-
stance), the probe is instead sampled from B̂ only. The
probe lies exactly on the mass center if � = 0, and the probe
is uniformly distributed on the instance if � = 1, otherwise,
the sampling strategy lies between two extreme situations.

During inference, for each Type-II request we have a
triplet {a, b, c} (see Section 4 for details, the subscript k
is omitted here for simplicity). To perform instance seg-
mentation by request, we first compute the mapped fea-
ture locations (af , bf ) = (b a

sf
c, b b

sf
c) for each FPN level,

where sf is the stride of the f -th FPN level, and sf 2
{8, 16, 32, 64, 128} for CondInst. The five mapped fea-
ture locations are viewed as candidates for producing sub-
sequent predictions. Finally, we only choose one predic-
tion with the highest categorical score, where the scores
are computed by the inner-product of the pixel-wise fea-
ture vectors (extracted from the FPN feature maps) and the
text embedding vector of the target class c (generated by
the text encoder). This process is illustrated in Figure 9.
For probing-based inference, there is at most one predic-
tion for an instance, which naturally eliminates the need of
non-maximum suppression (NMS).

In Table 6, we present the mask AP with respect to to dif-
ferent �. As shown, AP increases consistently with lower
� (i.e., closer to the mass center). We observed that AP
decreases dramatically with lager � if the mask sampling



Table 6. Instance segmentation results with non-probing-based
and probing-based inference on the CPP dataset. Results are pro-
duced using the semantic mask prediction of SegFormer-B5. The
hyper-parameter � controls the centerness of the probes.

AP (%) Non-Probing Probing (w.r.t. �)
0.0 0.2 0.5 1.0

CondInst (R50) [35] 36.6 – – – –
w/ CLIP 36.8 39.3 39.0 34.6 24.5
w/ CLIP & mask samp. 37.8 39.4 39.1 37.4 33.5

strategy was not used during training (the second row). We
diagnosed the issue and found that some probes away from
the instance center produced unsatisfying results, as shown
in Figure 11. The reason lies in that CondInst only samples
positive positions from a small central region of instance
by design [35, 36], thus not all possible probes are prop-
erly trained. To address this issue, we instead sample pos-
itive positions from the entire ground-truth instance masks.
The results are presented in Table 6 (the last row) and Fig-
ure 11 (the last column). As shown, by enabling mask sam-
pling during training, the results are much more robust to
the quality of probes. In addition to probing-based infer-
ence, we observed that mask sampling is also helpful for
non-probing-based inference, as shown in Table 1.

B. Details of the CPP Experiments
B.1. Data Statistics

The Cityscapes Panoptic Parts (CPP) dataset [5] extends
the popular Cityscapes [3] dataset with part-level seman-
tic annotations. There are 9 part classes belonging to 5

scene-level classes are annotated for 2,975 training and 500

validation images in Cityscapes. Specifically, two human
classes (person, rider) are labeled with 4 parts (torso, head,
arm, leg), and three vehicle classes (car, truck, bus) are la-
beled with 5 parts (chassis, window, wheel, light, license

plate). The CPP dataset provides exhaustive part annota-
tions that each instance mask (belonging to the chosen 5

classes) is completely partitioned into the corresponding
part masks. In our experiments, we use 19 semantic classes
(8 out of 19 are thing classes for instance segmentation) and
9 non-duplicate part classes in total. Results on the CPP val-
idation set are reported.

B.2. HPQ vs. PartPQ in CPP
In the scenario of CPP (only two hierarchies), the only

difference between PartPQ and HPQ lies in computing the
accuracy of the objects that have parts. PartPQ directly av-
erages the mask IoU values of all parts, while HPQ calls
for a recursive mechanism. CPP is a two-level dataset (i.e.,
parts cannot have parts), and all parts are semantically la-
beled (i.e., no instances are labeled on parts although some

Table 7. Overall segmentation results on CPP, using non-probing-
based inference and probing-based inference, respectively. ? indi-
cates that BPR [34] is used.

HPQ (%) Non-Probing Probing (w.r.t. �)
0.0 0.2 0.5 1.0

SegFormer (B0)
+ CondInst (R50) 56.0 57.0 56.8 56.7 56.2

SegFormer (B5)
+ CondInst (R50)? 61.6 62.7 62.6 62.2 61.7

of them, e.g., wheel of car, can be labeled at the instance
level). In this scenario, (1) the HPQ of a part (as a leaf
node) is directly defined as its mask IoU if the correspond-
ing prediction is a true positive (IoU is no smaller than 0.5)
and HPQ equals zero otherwise, and (2) since each part has
only one unit, the recognition of each part has either a true
positive (IoU is no smaller than 0.5) or a false positive plus
a false negative (IoU is smaller than 0.5) – that said, the de-
nominator of HPQ is a constant, equaling to the number of
parts. As a result, the values of HPQ are usually lower than
PartPQ (see Table 2).

B.3. Sampling incomplete annotations in CPP

In Table 3, we report the results of learning from incom-
plete annotations, where only a subset of annotations are
preserved for training. For the setting (1), we preserve all
semantic and instance annotations but randomly choose a
certain portion of part annotations. Specifically, there are in
total 161,182 annotated part-level masks in the CPP training
set. We randomly sample a certain ratio (e.g., 15% ⇠ 50%)
of part-level masks for training. For the setting (2), we
first randomly sample a certain ratio (e.g., 30% ⇠ 75%) of
scene-level masks (34,723 in total), and further sample the
same ratio of part-level masks within the preserved scene-
level masks, which is a more incomplete scenario. For both
settings, evaluation was conducted on the validation set with
complete part annotations. We find that ViRReq, without
any modification, adapts to both settings easily.

B.4. More Quantitative Results

We additionally report the HPQ results on the CPP
dataset with probing-based inference in Table 7 (while only
non-probing-based results are reported in Table 2). We
have by default used the instance segmentation results with
CLIP and mask sampling strategy. Interestingly, although
the non-probing-based setting surpasses the probing-based
settings with large � values in instance AP, it reports lower
HPQ values because probing-based tests usually generate
some false positives with low confidence scores – HPQ,
compared to AP, penalizes more on these prediction errors.
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Figure 11. Results of using different types of probes (from top to bottom): mass center of instance (� = 0), random points on the instance
(� = 1), handcrafted low-quality probes that closing to the instance boundaries. Best viewed digitally with color.

B.5. Details of Competitors
We introduce the details of the competitors [5, 23] com-

pared in Table 2, which are the only two existing works
that have reported results on CPP. PPS [5] first provided the
CPP dataset and the PartPQ metric for the task of part-aware
panoptic segmentation, and established several baselines by
merging results of methods for the subtasks of panoptic and
part segmentation. Panoptic-PartFormer [23] is a unified
Transformer-based model that predicts different levels of
masks jointly, which achieves significant improvement over
PPS [5].

Note that although we provide a comparison in Ta-
ble 2, but this work is essentially different to these meth-
ods, and our work is actually not optimized for higher re-
sults on the fully-annotated CPP dataset. The most impor-
tant advantages of ViRReq are the abilities to learn com-
plex hierarchies from incomplete annotations and adapt to
new concepts easily, while the competitors [5, 23] do not
have. The numerical differences (or benefits) in comparison
may originate from various aspects (e.g., backbone, train-
ing time), and it is difficult to compare with the competi-
tors in a completely fair manner (e.g., keeping the parame-
ters/FLOPs/training epochs in a similar level) since both the
methods are highly complicated.

B.6. Qualitative Results
We visualize some segmentation results of ViRReq on

CPP, as shown in Figure 12. The results are obtained

through probing-based inference, where the mass center
was used as the probe (i.e., � = 0). The probing pixels
are omitted in the figure for simplicity.

B.7. Open-Domain Recognition
We provide some open-domain segmentation results on

CPP, as shown in Figure 13. The top three rows in-
dicate anomaly segmentation, i.e., finding unknown con-
cepts in an image. Example images are taken from the
Fishyscapes [46] dataset (an anomaly segmentation bench-
mark). These anomalies (e.g., dog, box, etc.) were usu-
ally not detected by the regular segmentation model (see
Figure 2 of [46]), but were found by our approach which
was not specifically designed for this task. The last row
involves compositional segmentation, i.e., transferring part-
level knowledge from one class (e.g., car) to others (e.g.,
caravan or trailer) without annotating new data but di-
rectly copying the sub-knowledge from the old class to new
classes.

C. Details of the ADE20K Experiments
C.1. Data Preparation and Statistics

The ADE20K [43] dataset provides pixel-wise anno-
tations for more than 3,000 semantic classes, including
instance-level and part-level annotations. SceneParse150 is
a widely used subset of ADE20K for semantic segmenta-
tion, which consists of 20,210 training and 2,000 valida-



Figure 12. Visualization results of ViRReq on CPP. Results of different requests are merged together. Best viewed digitally with color.

anomaly: a dog pasted on a street image anomaly: a box pasted on a street image

anomaly: an airplane pasted on a street image anomaly: a cat pasted on a street image

anomaly: a dog pasted on a street image anomaly: a cow pasted on a street image

semantic: [caravan], parts: [window, wheel, light, license plate, chassis] semantic: [trailer], parts: [window, wheel, light, license plate, chassis]

Figure 13. Examples of open-domain recognition on the CPP dataset: anomaly segmentation (top three rows), and compositional segmen-
tation (the last row), respectively. Black region corresponds to others.



tion images covering 150 most frequent classes. For in-
stance segmentation, 100 foreground object classes are cho-
sen from 150 classes, termed InstSeg100 (see Section 3.4
of [43]), while few works have reported results on Inst-
Seg100. As for part segmentation, we found the annota-
tions are significantly sparse and incomplete 2. There are
289 non-duplicate part classes belonging to the 100 instance
classes 3. The labeling ratio for part classes is pretty low:
only 15% of instances have part annotations on averaged
(0.03% ⇠ 69.3% for each instance class individually). In
our experiments, we first filter the part-of-objects classes
that the number of occurrences is no fewer than 100, re-
sulting in 82 non-duplicate part-level classes belonging to
40 instance classes. Then, we further filter the part-of-parts
classes that the number of occurrences is no fewer than 100,
resulting in 29 non-duplicate part-of-parts classes belonging
to 17 upper-level part classes. We conjecture that the sparse
annotation property is the main reason that no prior works
have reported qualitative results for part-level segmentation
on this dataset. Results on the ADE20K validation set are
reported. For the vocabulary used in the experiments, se-
mantic and instance classes can be easily found in the orig-
inal dataset [43], and we additionally list the part-of-object
classes as follows in the format of instance class name (the

number of part classes): [part class names].

• bed (4): [footboard, headboard, leg, side rail]

• windowpane (5): [pane, upper sash, lower sash, sash,
muntin]

• cabinet (7): [drawer, door, side, front, top, skirt, shelf]

• person (13): [head, right arm, right hand, left arm, right
leg, left leg, right foot, left foot, left hand, neck, gaze,
torso, back]

• door (5): [door frame, knob, handle, pane, door]

• table (4): [drawer, top, leg, apron]

• chair (7): [back, seat, leg, arm, stretcher, apron, seat
cushion]

• car (9): [mirror, door, wheel, headlight, window, license
plate, taillight, bumper, windshield]

• painting (1): [frame]

• sofa (7): [arm, seat cushion, seat base, leg, back pillow,
skirt, back]

• shelf (1): [shelf]

• mirror (1): [frame]

• armchair (9): [back, arm, seat, seat cushion, seat base,
earmuffs, leg, back pillow, apron]

• desk (1): [drawer]

• wardrobe (2): [door, drawer]

2The statistics are conducted based on the newest version of ADE20K
from the official website.

3In our definition, only instance classes have part-level annotations.

• lamp (9): [canopy, tube, shade, light source, column,
base, highlight, arm, cord]

• bathtub (1): [faucet]

• chest of drawers (1): [drawer]

• sink (2): [faucet, tap]

• refrigerator (1): [door]

• pool table (3): [corner pocket, side pocket, leg]

• bookcase (1): [shelf]

• coffee table (2): [top, leg]

• toilet (3): [cistern, lid, bowl]

• stove (3): [stove, oven, button panel]

• computer (4): [monitor, keyboard, computer case,
mouse]

• swivel chair (3): [back, seat, base]

• bus (1): [window]

• light (5): [shade, light source, highlight, aperture, diffu-
sor]

• chandelier (4): [shade, light source, bulb, arm]

• airplane (1): [landing gear]

• van (1): [wheel]

• stool (1): [leg]

• microwave (1): [door]

• sconce (5): [shade, arm, light source, highlight, back-
plate]

• traffic light (1): [housing]

• fan (1): [blade]

• monitor (1): [screen]

• glass (4): [opening, bowl, base, stem]

• clock (1): [face]

The part-of-parts classes are listed as follows in the
format of part class name (the number of part-of-parts

classes): [part-of-parts class names].

• upper sash (3): [pane, stile, muntin]

• lower sash (4): [rail, stile, pane, muntin]

• sash (4): [pane, rail, stile, muntin]

• drawer (2): [knob, handle]

• door (7): [hinge, knob, handle, pane, mirror, window,
muntin]

• head (5): [eye, mouth, nose, ear, hair]

• back (3): [rail, spindle, stile]

• arm (4): [inside arm, outside arm, arm panel, arm sup-
port]

• wheel (1): [rim]

• window (3): [muntin, pane, shutter]



Table 8. Semantic segmentation (Type-I) accuracy of ADE20K
on Level-1 (i.e., scene classes, e.g., car) and Level-2 (i.e., part-
of-object classes, e.g., wheel) classes, Level-3 (i.e., part-of-parts
classes, e.g., rim).

mIoU (%) Lv-1 Lv-2 Lv-3
SegFormer (B0) [39] 37.85 – –
w/ CLIP & parts (ours) 36.38 43.08 51.56
SegFormer (B5) [39] 49.13 – –
w/ CLIP & parts (ours) 48.52 55.13 63.40

Table 9. Instance segmentation results with non-probing-based
and probing-based inference on the ADE20K dataset. Results are
produced using the semantic mask prediction of SegFormer-B5.
The hyper-parameter � controls the centerness of the probes.

AP (%) Non-Probing Probing (w.r.t. �)
0.0 0.2 0.5 1.0

CondInst (R50) [35] 24.6 – – – –
w/ CLIP & mask samp. 25.2 29.8 29.4 27.6 24.0

Table 10. Overall segmentation results on ADE20K, using non-
probing-based inference and probing-based inference respectively.

HPQ (%) Non-Probing Probing (w.r.t. �)
0.0 0.2 0.5 1.0

SegFormer (B0)
+ CondInst (R50) 27.2 34.2 34.2 33.8 32.9

SegFormer (B5)
+ CondInst (R50) 33.9 39.1 38.9 38.5 37.9

• column (2): [shaft, capital]

• base (1): [wheel]

• stove (1): [burner]

• oven (1): [door]

• button panel (1): [dial]

• monitor (1): [screen]

• face (1): [hand]

C.2. More Quantitative Results
We report the individual segmentation accuracy of Type-

I and Type-II requests on ADE20K, as shown in Tables 8
and 9, respectively. We additionally report the HPQ results
on the ADE20K dataset with probing-based inference in Ta-
ble 10 (while only non-probing-based results are reported in
Table 4). We have by default used the instance segmenta-
tion results with CLIP and mask sampling strategy. Simi-
lar to the observations on CPP, although the non-probing-
based setting achieves comparable instance AP, it reports
lower HPQ values due to the penalty on false positives. Be-
sides, all these values are significantly lower than the values
reported on CPP, indicating that ADE20K is much more
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Figure 14. An illustration of how Type-I requests are processed for
one pixel with the conventional method. Each slot indicates the
predicted logit of one class. All classes are used during training.
See Figure 3 for detailed differences.

challenging in terms of the richness of semantics and the
granularity of annotation. Overall, there is much room for
improvement in such a complex, multi-level, and sparsely
annotated segmentation dataset.

C.3. Details of Competitor
We introduce the details of the competitor (i.e, conven-

tional method) compared in Table 4. Since no prior works
have ever reported quantitative results for part-aware seg-
mentation on ADE20K, we provide a preliminary solution
of adapting conventional methods to ADE20K (see Sec-
tion 5.3). Figure 14 illustrates how the competitor method
deals with Type-I requests, i.e., joint training in a multi-
task manner and simply ignoring all unlabeled pixels. There
are several main differences compared to ViRReq: (i) using
fixed class ID and learnable classifier for each class instead
of language-based queries, (ii) predicting different levels of
results simultaneously instead of iteratively, and (iii) how
to handle unlabeled pixels. See Figure 3 for detailed differ-
ences.

C.4. More Qualitative Results
We visualize more segmentation results of ViRReq on

ADE20K, as shown in Figure 15.

C.5. Details of Few-shot Incremental Learning
ViRReq has the ability of learning new visual concepts

(objects and/or parts) from a few training samples. To show
this ability, we manually select 50 scene-level and 19 part-
level long-tailed classes of ADE20K and add them to the
original knowledge base, as listed below. For each new con-
cept, 20 instances are labeled for few-shot learning.

• scene-level classes: spotlight, wall socket, fluores-
cent, jar, shoe, candlestick, switch, air conditioner, tele-
phone, mug, container, board, candle, cup, pitcher,
deck chair, light bulb, coffee maker, teapot, partition,
shrub, figurine, magazine, can, umbrella, bucket, nap-
kin, text, gravestone, pane, patty, manhole, hat, door-
frame, curb, loudspeaker, snow, pool ball, hedge, pipe,



image
semantic seg.

(type-I)
instance seg.

(type-II)
part of objects

seg. (type-I & II)
part of parts
seg. (type-I)

part of objects
(annotation)

part of parts
(annotation)

car: {wheel, door, taillight, headlight,
windshield, window, license plate}

car: {wheel, door, taillight, headlight,
windshield, window, license plate}

door: {handle, mirror, window}
wheel: {rim}

door: {handle, mirror, window}
wheel: {rim}

back: {rail, spindle, stile}
door: {knob, handle, hinge}
…

chair: {back, seat, leg, apron, stretcher}
cabinet: {door, drawer, side, top}
…

chair: {back, seat, leg, apron, stretcher}
cabinet: {door, drawer, side}

back: {rail, stile}
door: {knob}

cabinet: {door, drawer, side, top}
refrigerator: {door}
…

door: {handle, hinge, pane, window}
drawer: {handle}
…

cabinet: {door, drawer}
refrigerator: {door}

door: {handle, window}
drawer: {handle}

clock: {face} clock: {face}face: {hand} face: {hand}

Figure 15. More visualization results of ViRReq on ADE20K. Black areas in prediction indicate the others (i.e., unknown) class. The
corresponding sub-knowledge is listed in the blank area for reference. Best viewed in color and by zooming in for details.

image original incremental

add central
reservation
to scene

add
gravestone
to scene

add bed, rail
to pool table

add fuselage,
wing, stabilizer
to airplane

pool table: {leg, side pocket, corner
pocket}

pool table: {leg, side pocket, corner
pocket, bed, rail}

airplane: {landing gear} airplane: {landing gear, fuselage, wing,
stabilizer}

Figure 16. More qualitative results of few-shot incremental learn-
ing on objects (top two rows), and object parts (bottom two rows).
Prior to incremental learning, these new concepts are recognized
as others (the black areas) which is as expected.

central reservation, booklet, grill, place mat, faucet,
notebook, document, fish, jacket, price tag

• part-level classes: bedpost, sill, casing, rail, stile, gas
cap, chain, capital, shaft, bed, burner, dial, speaker,
piston, wing, stabilizer, fuselage, turbine engine, motor

We noticed that existing few-shot semantic segmentation
approaches [48–50, 52] usually focus on finding visual cor-
respondences between query and support images for mask
prediction (e.g., the prototype-based methods), without up-

dating the original models learned on base classes. How-
ever, we believe that it is more essential to update (e.g., fine-
tune) the model to learn knowledge of the new visual con-
cepts. Inspired by the recent works on CLIP-based few-shot
classification [10,44], we mostly follow CLIP-Adapter [10]
to integrate an additional bottleneck layer (e.g., two 1 ⇥ 1

convolutional layers) for feature alignment. Only this bot-
tleneck layer gets updated during the fine-tuning, i.e., learn-
ing to project the original trained visual features to a new
feature space.

Note that, in our setting, the existing training images may
contain unlabeled pixels of these new classes (expect to rec-
ognize as others originally). To avoid possible conflict, we
associate each training image to the knowledge base that
was used for annotation (which we call data versioning,
see Section 3.2). For example, one image may have mul-
tiple copies in the training set that associated with different
version of knowledge base (e.g., annotating for the newly
added concepts or not).

Specifically, we mix the original and new training im-
ages and fine-tune the trained SegFormer-B5 model for 40K
iterations (1/4 of base training iterations). Since the num-
ber of new training images (e.g., 20 ⇥ 50 = 1000 images
for scene-level incremental learning) is significantly lower
than the original (e.g., 20,210 training images), these new
images are repeated multiple times during training to alle-
viate the imbalance problem. Other configurations are the
same as the base training (see Appendix A.2). We show
more qualitative results in Figure 16.



Quantitatively, the mIoUs of the newly added 50 scene-
level and 19 part-level classes are 7.0% and 16.6%, respec-
tively. The situations vary across classes – some results
(e.g., 34.8% for jacket) are reasonable, but others (e.g.,
0.5% for hat) are unstable because ADE20K contains very
few yet style-diversified test cases.

C.6. Limitations
One of the limitations is error propagation, which oc-

curs between adjacent levels of segmentation, for exam-
ple, inaccurate scene-level semantic segmentation results
may affect the subsequent instance segmentation since we
expect that the predicted instance mask should strictly be
inside the predicted semantic region. For example, some
chairs in Figure 4 are recognized incompletely, so the cor-
responding parts (e.g., legs) are missing. We empirically
found that, by replacing the semantic prediction with the
corresponding ground-truth (i.e., eliminating error propa-
gation) on CPP, the instance segmentation results could be
improved by 2 ⇠ 3% AP. Note that the performance gap is
moderate because the semantic results on CPP are usually
superior (75 ⇠ 85% mIoU), and the performance gap would
be more significant on ADE20K. Additionally, we believe
that applying advanced mask fusion methods [21,24,30,32]
could mitigate the error accumulation effects. Besides er-
ror propagation, the limitations of ViRReq also include us-
ing separate models for two request types, the manual con-
struction of knowledge base, etc., which we leave for future
work.
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