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1. OverView

In this supplementary material, we present more exper-
imental details and results. Experimental details include:
section2-5, more experimental results include: section6 and
section7.

2. Detailed setting of Deep Navigator

Deep Navigator obtains feature maps on three scales:
{14x14,7x7,4x4}. We set a certain number of anchors on
the large-scale feature maps and more anchors on the small-
scale feature maps, so as to balance the number of anchors
at different scales. The number of anchors is {6,6,9} re-
spectively (To exmine more tiny discriminative regions of
the objects, we use the same number of anchors in the size
of {14 x 14} and the size of {7 x 7}). We do not need to cor-
rect the anchor position, so we do not need ground truth as a
monitoring signal. We only need to obtain the informative-
ness of each anchor. And the informativeness reflects the
probability that the anchor has discriminative regions. Then
we use Soft-NMS [1] to filter out the discriminative regions
we need according to the informativeness. The architecture
of the Deep Navigator is shown in Figure. 1.
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Figure 1. The architecture of the Deep Navigator. The Deep Navi-
ator can generate multi-scales discriminative regions. We set the
amount of the anchors as {6,6,9} respectively on the feature maps
of three scales.
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3. Details of Graph construction

For region r,, and r,, we set the center coordinates
of the two regions in the original image as (z,, ym) and
(zn, yn), and the edge weight between the two regions is:
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where ¢ and [ are used to balance the order of magnitude be-
tween the weight value of the edge and feature value of the
node. The closer the two nodes are, the greater their edge
weight value, which means that the relationship between the
two nodes is closer. Besides, we set the parameters ¢ and [
as learnable parameters.

For the features of nodes, we first crop and resize the
discriminative regions from the original image to a unified
size, and use the same feature extractor to extract the high-
level semantic features of the discriminative regions. The
feature extractor is the backbone and share parameters. The
feature extractor abstracts the discriminative regions into a
multi-channel feature map. We use global average pooling
operation to convert the feature map into a feature vector,
which will be added to the graph as the node feature cor-
responding to the discriminative regions. Considering the
inference speed, we can directly use bilinear interpolation
sampling on the feature maps of the backbone to obtain the
features of the discriminant region, and compress the fea-
tures of the discriminant region into vectors through global
average pooling.

4. Training steps

We record the parameters of the backbone as Wiy, ckbones
the parameters of the Deep Navigator as Wi avigator- The
training process of this method is shown in Algorithm 1.

5. Data preprocessing and Hyperparameter
setting

In our experiment, all the input images were prepro-
cessed to 600 x 600. We randomly rotate the image within



Algorithm 1 Training our method

Input : Training dataset {image;,label;}Y |, hyper-
parameters M, «, 3,7, 6.
Output : The score of each category.
I: Fort=1---T do
2: Fori=1---Ndo

3: Get a sample iamge; as x, get the feature:
raw=backbone(x).

4: Generate anchors:
{A1, A, Asgra).

5: Calculate the information:
{1!}18Y4=N avigator(backbone(z)).

6: Get the discriminative regions:

{112y, {RiHL =Soft NMS ({1 1104, { 4; }1011).
7 Construct the graph G with the coordinate of

the discriminative regions from Supplementary Eq.(1),
add the node feature:
{hi} M =backbone({R;} ;).

8: Message Passing on the graph G to update the
node feature as {h}*£, from Submission Eq.(1)-(3),
calculate the confidence of the node as {C;}}4, ,
calculate the score of the node from Submission
Eq.(6).

9: Readout the graph feature as score from
Submission Eq.(4).

10: BP(L) get the gradient of:
{Wbackbonea Wla W27 Wnavigator}-
11: Update {Wbackbonea Wnavigato’r‘a le W2}
using SGD.
12: end

a 45 degree angle, and cut the area size of {448 x 448}
from the images, and the images are standardized on three
channels, with mean value (0.485, 0.456, 0.406) and stan-
dard deviation (0.229, 0.224, 0.225). We use ResNet-50 [2]
as the default backbone and use the pre-training model on
Imagenet [3] to initialize ResNet-50. We use Momentum
SGD with initial learning rate le-4 and the learning rate is
multiplied by 0.1 after 40 epochs, and we use weight de-
cay le-4. The Soft-NMS threshold is set to 0.25. The pro-
posed method is trained using 600 epochs with a batch size
of 8. All of our experiments are conducted on PyTorch with
Nvidia Tesla V100 GPUs.

6. Supplementary Results of Ablation Experi-
ments

The number of discriminative regions affects the classi-
fication accuracy of the model, as shown in Figure. 2. As
we can see from Figure. 2, when the number of the discrim-

inative regions is small, the lack of some information leads
to the low classification accuracy of the model. With the
increase of the number of the discriminative regions, more
information is introduced and the classification accuracy of
the model is improved and stabilized within a certain range.
In addition, an appropriate number of the discriminative re-
gions can make full use of the message passing mechanism
to improve Top-1 accuracy.

We test the proportion of «,f3,7,86. We set
six different propotions in Table 1.  According to
Submission Eq.(11), «,3,7,6 are the coefficients of
Lbackbone7 Lnavigator7 Lmessag67 Lgraph in total loss. The
function of backbone is to extract features. So the per-
formance of backbone usually affects the Deep Navigator
and message passing. And the Deep Navigator and mes-
sage passing can directly affect the recognition results of the
model. We set « = 8 = v = 6 = 0.25 as the benchmark,
when we only increase 3 to 0.4 or -y to 0.4, the accuracy will
be significantly improved to 89.5% and 90.9% respectively.
If we only increase «, the accuracy will drop from 88.7%
t0 88.2%. Lgrqpn using RCE to calculate the loss and cor-
responds to the last layer classifier of the whole graph clas-
sification, and L 4,.qpp, also directly affects the recognition
accuracy of the model. Besides, the characteristic of RCE
to increase the inter-class differences can further help the
model improve the recognition accuracy. Therefore, when
we increase f3, 7, 0 at the same time, the recognition accu-
racy of the model reaches the highest of 91.8%.

Table 1. Ablation Study of Loss Propotion on CUB-200-2011,
backbone: ResNet50

«@ 8 ol 0 Top-1 Accuracy(%)
0.25 | 0.25 | 0.25 | 0.25 88.7
0.2 0.2 0.2 0.4 91.2
04 | 02 | 02 | 02 838.2
02 | 04 | 02 | 02 89.5
02 | 02 | 04 | 02 90.9
0.1 | 025|025 | 0.35 91.8

7. Supplementary Results of RCE

In Figure. 3, we use t-SNE to visualize the distribution
of the model output. It can be clearly seen that the clusters
in the second row are far more apart than the clusters in the
first row, which means that the performance of RCE is bet-
ter than CE for fine-grained classification. Then, different
columns represent the comprison of differnt models for fine-
grained classification. The first two columns are the models
not designed especially for fine-grained classification. We
can see that the distribution of model output of these models
are rather disordered which means that these models can not
do well in fine-grained classification. And the third column
represents the distribution of model output of NTS-Net, the
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Figure 2. The relationship between accuracy and the number of discriminative regions. Under the condition of setting different number of
discriminative regions, the model recognition effects of introducing message passing network and RCE training are tested respectively.
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Figure 3. Based on t-SNE visualization, the training results of CE and RCE are compared. Different categories are marked with different
colors.

clusters of which are more apart than the first two models.
This means that NTS-Net is a better model for fine-grained
classification than ResNet50 and Xception. It can be seen in
the forth column that the clusters are far more apart than the
first three columns which means that our model have better
performance than these models and PMRC has the ability
to classify the fine-grained samples well.
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