Appendix

We first introduce the pose estimation pipeline in dataset
construction in Appendix A. In Appendix B, we specify
the details of the method implementation. We individu-
ally evaluate each module in our method, and the results
are in Appendix C. We also show some qualitative results
in Appendix D to demonstrate our method’s capability of
inferring the past. Appendix E is an ablation study on our
method pipeline. Finally, we state the approval for our
Thermal-IM dataset in Appendix F.

A. Pose estimation in dataset construction

We implement a two-stage pose extraction pipeline to ac-
quire smooth and accurate 3D poses from RGB video pairs.

In the first stage, we use [4] to estimate a coarse 3D pose
for every RGB frame. The resulting poses are in Open-
Pose [2] body_25 skeleton with 25 joints. According to the
pose estimation results, we divide the videos into continu-
ous segments, ensuring that the character is always in the
view of both cameras in each segment.

In the second stage, we synthesize the monocular pose
estimation results of the two cameras to improve the pose
quality. We first implement a triangulation step for more
accurate depth estimation. Specifically, for each timestamp
t, let py, q; be the coarse 3D poses in the camera coordinates
detected from the two cameras. We find a pair of scales a, b
that minimizes the /5 distance between p; - @ and ¢; - b in
the world coordinate. After that, we use EasyMocap [1] to
refine the pose sequence further. It smooths a sequence of
3D poses by optimizing the SMPL body parameters [6].

We further eliminate the failure cases of pose estimation.
Specifically, all the poses are clustered into 2000 groups,
and we manually filter out the clusters representing con-
torted poses.

B. Implementation details

Data processing: In our task, we use the first 15 joints
out of the 25 joints in the OpenPose skeleton to represent a
human pose. The first 15 joints are enough to depict human
actions while ignoring the details such as ears and toes.
The input image size for our model is 288 x 384. And
the evaluation metric MPJPE is also computed at this scale.
The RGB and thermal lenses of our RGB-Thermal camera
have different fields of view, and that of the thermal lens is

Module Learning rate  Batch size
GoalNet 5x 107° 32
TypeNet 5x107° 128
PoseNet 1x10~* 32
Semantic score model 3x107° 128

Table 1. Learning rates and batch sizes.

Figure 1. Samples used to develop the semantic score classifier.
Plausible ones are samples in the dataset, while implausible ones
are derived by random pose replacement, shift, and perturbation.

smaller. We resize the thermal images in a preset way to
align with the human poses, which are estimated in RGB
image space.

Model implementation: The backbones of GoalNet and
PoseNet are both an Hourglass model [7] with three blocks,
while that of TypeNet is ResNetl8 [3]. The sizes of
heatmap outputs of GoalNet and PoseNet are 72 x 96, and
they are resized to be 288 x 384 by interpolation.

All modules are trained using the Adam optimizer [5] for
6k batch iterations. The learning rates and batch sizes are in
Tab. 1. We use random crop and flip as data augmentation
for all of them.

Semantic score: The data we use to train the semantic
score model contains RGB images with plausible and im-
plausible poses. Plausible poses are the 3s-ago poses, and
implausible poses are derived by randomly replacing, shift-
ing, and perturbing the plausible ones. Some samples are
shown in Fig. 1.

Given an RGB image and a pose, we want a binary clas-
sifier to estimate how likely the pose is plausible. We use



Average /5 Distance
Topl Top3 Top5
GoalNet 10.50 15.02 31.12

Module

Table 2. Evaluation of GoalNet. We calculate the ¢ distances
from the top-1/3/5 predicted positions to the ground truth in the
number of pixels.

Accuracy
Topl Top3 Top5
TypeNet 10.50 15.02 31.12

Module

Table 3. Evaluation of TypeNet. The task of TypeNet is indeed
classification, so we evaluate the top-1/3/5 accuracy of its predic-
tion.

ResNet18 as the model and train it with Binary Cross En-
tropy Loss. It is trained using the Adam optimizer with a
weight decay of 1 x 10~2 for 6k batch iterations. The learn-
ing rate and batch size are in Tab. 1. Random crop and flip
are used as data augmentation.

C. Individual evaluation of modules

As the three modules in our method are trained sepa-
rately, we evaluate their performances in their own tasks in
the following.

GoalNet: For each test instance, GoalNet samples 30
torso joint positions according to the predicted heatmap,
and we evaluate how close they are to the ground truth 3s-
ago position. We sort the 30 positions by order of their dis-
tances to the ground truth and compute the average ¢ dis-
tance of the top-1/3/5 ones. We show the results in Tab. 2.

TypeNet: We evaluate TypeNet as a classifier and report
its top-1/3/5 accuracy. The results are in Tab. 3.

PoseNet: We examine how the refinement of PoseNet
makes an inputted pose type center closer to the ground
truth 3s-ago pose. We report the MPJPE of poses before
and after refinement in Tab. 4.

D. More qualitative results

In Fig. 3, we show samples of our method’s synthesized
poses in the test set. The involved indoor actions include
sitting on a sofa/chair/table, lying on a sofa, touching a cab-
inet/bottle, and several actions on a yoga mat (sit-ups, push-
ups, and leg stretching).

MPJPE
Before After
PoseNet 8.87 8.59

Module

Table 4. Evaluation of PoseNet. Given the cluster center pose as
input, we evaluate how much our PoseNet can refine it. The table
shows the MPJPE from the poses to the ground truth poses before
and after PoseNet refinement.

c) w/o PoseNet

Figure 2. Ablation study on model architecture. From the ther-
mal image, we can deduce that the person was sitting on the chair
with arms on the table. In the model w/o TypeNet, predicted poses
are often out-of-shape. The model w/o PoseNet can hardly provide
the pose we desire because the number of pose types is limited.
Our full model can refine the center pose of a type to fit with the
details in the image, so it successfully generates sitting poses with
an arm on the table (the 1st and 3rd column).

E. Ablation studies on pipeline modules

We implement two versions of our model without Type-
Net or PoseNet to see how these modules contribute to our
method.

w/o TypeNet: In a model without TypeNet, PoseNet gen-
erates a pose based on the input image and a root position
given by GoalNet. The type of the synthesized pose is not
specified here. In some cases, however, various poses are
possible at a specific position. The skeleton joints gener-
ated by this model cannot be guaranteed to belong to the
same pose, which leads to out-of-shape results as Fig. 2(b)
shows and low semantic score in Tab. 5. Besides, because
the generated poses are far from reality, the top-1 MPJPE
is much higher than our complete model, though the top-5
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Figure 3. Visualization results of our model. For each sample, we sort the 30 predictions in order of MPJPE and show the 1st, 3rd, 5th,
10th, and 20th poses from left to right. Please pay attention to the bright marks pointed out by the arrows in the thermal images.



Modules MPJPE NLL  Semantic Score(%)
GoalNet TypeNet PoseNet Topl Top3 Top5
v v 19.04 2245 25.19 112.28 73.12
v v 18.64 22.61 2565 N/A 76.68
v v v 18.33 2225 2525 103.75 82.11

Table 5. Ablation study of removing different components. Our model (the last row) outperforms the incomplete ones in most metrics,
though removing TypeNet provides a slightly lower Top-5 MPJPE. We do not report the NLL for the one without PoseNet since it cannot

be calculated in this setting.

MPIPE is competitive.

w/o PoseNet: In a model without PoseNet, TypeNet pro-
vides a pose type, and the center pose of this type is moved
to the GoalNet’s predicted position to serve as an answer.
Since the number of pose types is limited, the duplicated
pose cannot always fit with the details in the image. In the
first column of Fig. 2(a) vs. (c¢), the model without PoseNet
simply draws a sitting pose, while our complete model re-
fines it so that the right arm is put on the table. As Tab. 5
illustrates, the refinement served by PoseNet improves both
the synthesized poses’ similarity to the answer and the plau-
sibility in the context.

F. Approval

We have obtained approval for collecting and using the
Thermal-IM dataset from the Institutional Review Board of
our university department.
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