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A. Detailed analysis

A.1. Ablation study

Tab. 1 shows the results of an ablation study on the region
selection and abnormality classification modules. For full
report generation, our method at minimum requires an ob-
ject detector to extract region visual features and a language
model to generate region-specific sentences, thus these two
modules together form the base model. We investigate the
effects of incorporating the abnormality classification and
region selection module, respectively, into this base model
by evaluating on BLEU-4, METEOR, and clinical efficacy
(CE) metrics micro-averaged over five observations.

We observe that adding the abnormality classification
module has a negligible effect on conventional natural
language generation (NLG) metrics of BLEU-4 and ME-
TEOR, whilst substantially improving CE recall by +10.2%
(∆+28.4%) at the slight expense of CE precision. This
showcases that 1) conventional NLG metrics are ill-suited
for evaluating the clinical accuracy of generated reports
[1,8,13] and 2) the abnormality classification module effec-
tively encodes abnormality information in the region visual
features, as evidenced by the substantial increase in recall.

Incorporating the region selection module substantially
boosts the performance of the base model across all met-
rics, likely due to the changed approach in training the lan-
guage model once the region selection module is introduced
to the base model. In the base model, the language model
is trained with all reference sentences (i.e., empty and non-
empty) of all 29 regions per image, as the generated sen-
tences of all 29 regions are concatenated to form the final
report. Since there are 2.2 times more empty reference sen-
tences than non-empty reference sentences (see weighted
binary cross-entropy loss of the region selection module in
Appendix C.2), the language model learns to often generate
empty sentences for regions. Thus intuitively, the language
model in the base model is not only tasked with generating
region-specific sentences, but also with ”deciding” which
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regions require non-empty sentences. In addition, the gen-
erated reports of the base model are shorter than those of
the base model + region selection module. This is because
even though the language model in the base model gener-
ates sentences for all 29 regions (which are concatenated to
form the final report), a lot of these generated sentences will
be empty. We verify this by calculating the average number
of tokens (using a Spacy tokenizer) in a generated report by
the base model vs. base model + region selection module.
While a generated report by the base model contains on av-
erage 39 tokens, incorporating the region selection module
increases this to 52 tokens. Thus, the base model may not
be generating sufficiently long reports containing region-
specific sentences that accurately describe abnormalities,
which may be reflected in the low CE recall score.

When the region selection module is incorporated into
the base model, the language model is trained exclusively
on region visual features with corresponding non-empty ref-
erence sentences. This removes the implicit task of ”de-
ciding” which regions need sentences, potentially allow-
ing the language model more capacity to generate better
region-specific sentences. This could explain the ∆+9.6%
increase in the BLEU-4 score and ∆+19.3% increase in the
METEOR score. Additionally, we can see that compared
to the base model, the CE recall improves significantly by
+19.2% (∆+53.5%), which is likely due to the increased
capacity in generating better region-specific sentences, thus
more abnormalities are correctly described in the final re-
ports. However, we also observe a noticeable decrease in
CE precision score compared to the baseline. This may be
attributed to the low precision score of the region selection
module w.r.t. normal regions (see Appendix A.3), leading
to more normal regions being described in generated reports
and thus increasing the likelihood of false positives (i.e.,
normal regions being described as abnormal).

Finally, by combining the abnormality classification and
region selection modules in the RGRG model (outlined in
gray), we again see an increase in CE recall, verifying the
effectiveness and relevance of both modules for the overall
model performance.
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Dataset
Object

detector
Abnormality
classification

Region
selection

Language
model BLEU-4 METEOR Pmic-5 Rmic-5 F1, mic-5

MIMIC-CXR

✓ ✓ 0.104 0.135 0.578 0.359 0.443
✓ ✓ ✓ 0.107 0.138 0.550 0.461 0.501
✓ ✓ ✓ 0.114 0.161 0.498 0.551 0.523
✓ ✓ ✓ ✓ 0.126 0.168 0.491 0.617 0.547

Table 1. Ablation study on the abnormality classification and region selection modules. The performance is evaluated on two natural
language generation metrics (BLEU-4 and METEOR) and clinical efficacy metrics micro averaged over five observations. Each module
contributes to an increased performance (especially in recall) of the RGRG model.

Region RL LL SP MED CS AB Average Avg. num. detected regions
IoU 0.925 0.920 0.950 0.870 0.837 0.913 0.887 28.792

Table 2. Object detector results micro averaged over all anatomical regions as well as 6 prominent regions: right lung (RL), left lung (LL),
spine (SP), mediastinum (MED), cardiac silhouette (CS) and abdomen (AB). Almost all 29 anatomical regions are detected per image with
adequate IoU scores.

Module Regions P R F1

Region Selection
All 0.594 0.904 0.717
Normal 0.459 0.903 0.608
Abnormal 1.0 0.906 0.951

Abnorm. Classifier All 0.354 0.911 0.510

Table 3. Results of the region selection and abnormality classifica-
tion modules. Salient anatomical regions are selected for the final
report with high recall for both normal and abnormal regions, at
the expense of precision for normal regions. Anatomical regions
are classified as abnormal with high recall but decreased precision.

A.2. Object detector results

We evaluate the object detector via the Intersection over
Union (IoU) metric, which we calculate as the sum of the
intersection areas divided by the sum of union areas. We
use the IoU metric instead of the (in object detection) more
commonly used mean Average Precision (mAP) metric,
since each anatomical region typically appears exactly once
in an image, and never more than once. We report the micro
average IoU score over all regions as well as for 6 promi-
nent regions. Additionally, we report the average number of
detected regions per image.

The IoU scores in Tab. 2 demonstrate that anatomical re-
gions are detected adequately, with almost all 29 regions be-
ing detected per image with an average IoU score of 0.887.
We noticed that the ground-truth bounding boxes in the
Chest ImaGenome dataset, which were automatically ex-
tracted by a bounding box pipeline, do not always precisely
overlap with the real regions, which likely negatively im-
pacted the IoU scores. However, since ultimately the goal
is to generate consistent anatomy-related sentences (and not
perfect object detection), we believe that imperfect object
detection is acceptable.

A.3. Region selection and abnormality classification
results

We evaluate the binary classifiers of the two modules
on precision, recall, and F1 score. For the region selection
module, a region is deemed positive if it has a correspond-
ing reference sentence, and for the abnormality classifica-
tion module, a region is positive if it is abnormal as per
ground-truth. For region selection, we additionally report
the scores for the subsets of normal and abnormal regions.

Tab. 3 showcases the results. We observe that recall is
high for both normal and abnormal regions for region selec-
tion, thus regions that are described in the reference report
are also usually selected for the generated report. However,
precision is low for normal regions, meaning usually more
normal regions are selected for the generated report than
are described in the reference report. As mentioned in the
main paper, this can explain the low score for the ROUGE-
L (F1) metric, since the generated report thus contains more
information than the reference report, which in turn causes
a lower ROUGE-L precision score. However, the decision
to describe normal regions (e.g., ”There is no pleural ef-
fusion or pneumothorax.”) lies with the radiologist and is
arbitrary, since pathology-free regions are not required to
be mentioned in a report. Thus, we believe that this rather
subjective decision cannot be learned by a model and a low
precision score for normal regions is expected.

Precision is 1.0 for abnormal regions since by default
abnormal regions are always included in reference reports.
Hence, there cannot be any false positives for the abnormal
region subset. Consequently, the recall score for the normal
and abnormal region subsets cannot be directly compared.

For the abnormality classifier, we observe high recall and
low precision. Thus, abnormal regions are usually detected
correctly while normal regions are sometimes misclassified.



B. Detailed results

B.1. Qualitative anatomy-based sentence genera-
tion results

Left hilar structures:

Generated: There is mild pulmonary edema.

Reference: Moderate pulmonary edema is present.


Right lung:

Generated: There is no pneumothorax or pleural effusion.

Reference: There is no evidence of pneumothorax or 
pleural effusions.


Aortic arch:

Generated: The aorta is tortuous. 

Reference: The thoracic aorta is slightly ectatic.

Right upper lung zone:

Generated: The right upper lobe opacity is unchanged.

Reference: Multifocal consolidations, worst in the right 
upper lobe.


Trachea:

Generated: Endotracheal tube terminates approximately 4 
cm above the carina.

Reference: The patient is status post intubation with an 
endotracheal tube terminating approximately 5 cm from the 
carina.


Left mid lung zone:

Generated: Left lower lobe atelectasis is unchanged.

Reference: There are also patchy left lower lobe opacities.

Right lung:

Generated: No acute intrathoracic process. There is no 
focal consolidation, effusion, or pneumothorax.

Reference: No acute intrathoracic process. There is no 
focal consolidation, effusion, or pneumothorax.


Left clavicle:

Generated: There are no acute osseous abnormalities.

Reference: Imaged osseous structures are intact.


Cardiac silhouette:

Generated: The cardiomediastinal silhouette is normal.

Reference: The cardiomediastinal silhouette is normal.

Right lung:

Generated: No acute intrathoracic process. The lungs 
are clear without focal consolidation, effusion, or 
pneumothorax.

Reference: The lungs are clear without focal 
consolidation. No pleural effusion or pneumothorax is 
seen.


Cardiac silhouette:

Generated: The cardiomediastinal silhouette is normal.

Reference: The cardiac and mediastinal silhouettes are 
unremarkable, as are the hilar contours.

Abdomen:

Generated: NG tube tip is in the stomach.

Reference: Two enteric tube tips terminate within the 
stomach.


Trachea:

Generated: The endotracheal tube is in standard position.

Reference: Endotracheal tube tip is slightly low lying, 
terminating approximately 2.3 cm from the carina.


Cardiac silhouette:

Generated: The heart is borderline enlarged.

Reference: Moderate cardiomegaly.

Figure 1. Anatomy-based sentence generation for 5 test set im-
ages. The upper three images depict abnormal cases, while the
lower two depict normal cases. We show predicted (dashed boxes)
and ground-truth (solid boxes) anatomical regions and color sen-
tences accordingly.

B.2. Qualitative full report generation results

Fig. 2 showcases generated full reports for three test set
images. The left image shows a healthy chest X-ray image
devoid of any pathologies. Based on the matching colors
between generated and reference reports, we can see that
all information contained in the reference report is also in-
cluded in the generated report. In particular, the generated
report correctly describes the placement of the endotracheal
tube (colored in yellow), although with a slightly wrong nu-
merical value. Also, the nasogastric tube is correctly men-
tioned in the generated report. The generated report de-
scribes, clinically correctly, four additional negative obser-
vations (i.e. non-present pathologies), which are however
not mentioned in the reference report. As discussed in Ap-
pendix A.3, the region selection module has a low precision
score for normal regions, since the decision to mention nor-
mal regions in a report is arbitrary and cannot be effectively
learned. Thus, typically more regions are described in gen-
erated reports than in the corresponding reference reports,
which in turn lowers the ROUGE-L score. However, the
additionally described observations in the generated report
of the left image are all clinically accurate, thus we believe
that the region selection module selecting more regions than
are described in the reference report is not detrimental to the
quality of the generated reports.

In the middle image, we can see that the generated re-
port correctly describes the pleural effusion in the right lung
(colored in blue). However, while the generated sentence
erroneously specifies a decrease in the effusion in compari-
son to a previous radiograph, the reference describes an in-
crease. As mentioned in the limitations section of the main
paper, our method considers each chest X-ray in isolation,
and, as illustrated by this case, cannot correctly generate
sentences that depend on previous radiographs. Thus, in-
corporating the information of localized comparison rela-
tions for anatomical regions between sequential exams into
our method may be required to improve the generation of
such sentences. In addition, there are some duplicate men-
tions of observations in the generated report, but since they
are consistent with each other and clinically accurate, this is
acceptable from a clinical point of view. However, the gen-
erated report misses a potential small pleural effusion on
the left side (”presence of a small pleural effusion cannot
be excluded”), illustrating the need for interactiveness and
transparency during report generation, which is simplified
by our method.

The right image shows another chest X-ray with patho-
logical findings, which were mainly captured by the gener-
ated report. However, we can see that all sentences in the
reference report refer to previous radiographs, highlighting
again the importance of incorporating sequential informa-
tion in the method.



Generated report: As compared to the 
previous radiograph, there has been a 
decrease in the extent of the right 
pleural effusion. There is no 
pneumothorax. Moderate right pleural 
effusion and moderate right lower lobe 
atelectasis are unchanged. There is 
mild pulmonary edema. Moderate 
cardiomegaly and mild pulmonary 
edema are unchanged. Moderate 
cardiomegaly persists. NG tube tip is 
out of view below the diaphragm.


Reference report: As compared to the 
previous radiograph, the pre-existing 
right pleural effusion has minimally 
increased. The resulting atelectasis at 
the left and right lung bases as well as 
the cardiomegaly with mild pulmonary 
edema persist. Blunting of the left 
costophrenic sinus, so that the 
presence of a small pleural effusion 
cannot be excluded. No new 
parenchymal opacity. No 
pneumothorax. 

Generated report: There is no 
pneumothorax. Right lower lobe 
atelectasis is unchanged. Moderate 
right pleural effusion is unchanged. 
Bibasilar atelectasis is unchanged. 
There is no evidence of pulmonary 
edema. Right subclavian line ends in 
the mid SVC. Heart size is normal. No 
free air below the right 
hemidiaphragm.


Reference report: Portable chest 
radiograph demonstrates unchanged 
mediastinal, hilar, and cardiac 
contours. There has been interval 
development of bibasilar opacities 
likely reflecting atelectasis, though 
cannot exclude developing infectious 
process. Additionally, there has been 
interval increase in small right-sided 
pleural effusion.

Generated report: The lungs are clear. 
There is no pleural effusion or 
pneumothorax. There is no pulmonary 
edema. Mediastinal and hilar contours 
are unremarkable. The endotracheal 
tube terminates approximately 4 cm 
above the carina. There are no acute 
osseous abnormalities. The 
cardiomediastinal silhouette is within 
normal limits. NG tube tip is in the 
stomach.


Reference report: Tip of endotracheal 
tube terminates 5.5 cm above the 
carina, and a nasogastric tube 
courses below the diaphragm. 
Cardiomediastinal contours are within 
normal limits, and lungs are clear.

Figure 2. Full report generation for 3 test set images. Detected anatomical regions (solid boxes), corresponding generated sentences, and
semantically matching reference sentences are colored the same. The generated reports mostly capture the information contained in the
reference reports, as reflected by the matching colors. The left image shows a healthy chest X-ray image devoid of any pathologies, while
the other two images depict abnormalities.



B.3. Qualitative selection-based sentence generation results

Ground-truth:

Generated: Right lower lobe pneumonia.

Reference: Interval worsening of right 
lower lobe pneumonia.


Position 1:

Generated: The right upper lobe opacity 
has improved since ___.


Position 2:

Generated: Upper lungs are clear.


ground-truth
position

1
2

Ground-truth:

Generated: Right lower lobe pneumonia.

Reference: Interval worsening of right lower 
lobe pneumonia.


Aspect ratio 1:

Generated: Right lower lobe pneumonia.


Aspect ratio 2:

Generated: Right upper lobe pneumonia.


Ground-truth:

Generated: Right lower lobe pneumonia.

Reference: Interval worsening of right lower 
lobe pneumonia.


Scale 1:

Generated: Right lower lobe pneumonia.


Scale 2:

Generated: Right upper lobe pneumonia.


2

1

ground-truth
aspect ratio

2
1

ground-truth
scale

pneumonia

Figure 3. Visualizing selection-based sentence generation for a test set image with pneumonia pathology. The solid red bounding box
indicates the ground-truth anatomical region containing the pathology. Various dashed and colored bounding boxes represent radiologist-
drawn bounding boxes, deviating from the ground-truth in terms of position, aspect ratio, or scale. The generated sentences demonstrate
heightened sensitivity to bounding box position, while maintaining robustness towards variations in aspect ratio and scale.

Fig. 3 showcases the sensitivity of selection-based sen-
tence generation to the position, aspect ratio, and scale of
manually drawn bounding boxes within a test set image fea-
turing pneumonia pathology.

The left image in the figure demonstrates variations in
the position of the manually drawn bounding boxes. It is
evident that the position is crucial, as the generated sen-
tence for position 1 (slightly above the pathology) already
misses the pathology and only describes an upper lobe opac-
ity (which we believe is accurate). However, the gener-
ated sentence for position 2, which is even higher, com-
pletely misses the pathology and states that the upper lungs
are clear (which we again believe to be accurate). Conse-
quently, radiologists must be cautious to accurately position
the bounding box to ensure correct pathology detection.

The middle image in the figure displays variations in the
aspect ratio of the bounding boxes. For aspect ratios 1 and
2, both generated sentences correctly identify pneumonia.
However, the sentence for aspect ratio 2 erroneously indi-
cates that the pneumonia is located in the right upper lobe,

rather than the lower lobe. This mistake is understandable,
as the bounding box lacks sufficient surrounding informa-
tion to accurately determine the relative position within the
lung (i.e., upper or lower lobe).

The right image in the figure showcases variations in
scale. The generated sentences exhibit robustness, as both
scale variations correctly identify pneumonia. However,
similar to the aspect ratio case, the sentence for scale 2 in-
accurately describes an upper lobe pneumonia. Again, this
error can be attributed to the insufficient surrounding infor-
mation in the small-scaled bounding box.

In conclusion, selection-based sentence generation intro-
duces additional flexibility into the clinical workflow by
allowing radiologists to draw bounding boxes around ar-
eas of interest anywhere in the image. The primary caveat
is the importance of correct positioning for the bounding
box, which, if possible, should contain enough surrounding
information to enable the model to generate accurate sen-
tences.



B.4. Detailed clinical efficacy metrics results

Dataset Observation RGRG
P R F1 acc.

MIMIC-CXR

Micro Average 0.524 0.474 0.498 0.849
Atelectasis 0.402 0.853 0.546 0.602
Cardiomegaly 0.577 0.679 0.624 0.770
Consolidation 0.132 0.055 0.078 0.919
Edema 0.504 0.524 0.514 0.859
Pleural Effusion 0.700 0.467 0.560 0.826
Enlarged Cardiomediastinum 0.360 0.001 0.003 0.811
Fracture 0.0 0.0 0.0 0.0
Lung Lesion 0.217 0.004 0.007 0.957
Lung Opacity 0.517 0.181 0.268 0.730
No Finding 0.554 0.735 0.632 0.805
Pleural Other 0.200 0.001 0.002 0.975
Pneumonia 0.240 0.122 0.162 0.880
Pneumothorax 0.189 0.138 0.159 0.950
Support Devices 0.732 0.687 0.709 0.838

Table 4. Detailed results for the clinical efficacy (CE) metrics (see Appendix D.3 for details) for each observation as well as micro averaged
over all 14 observations. The first five observations listed from the top are those used in calculating the Pmic-5, Rmic-5, and F1, mic-5 scores in
Tab. 2 of the main paper. The observation of fracture has a score of 0.0 (outlined in gray), since there are no sentences describing fractures
in the Chest ImaGenome dataset. Thus, as mentioned in the limitations section of the main paper, a hybrid model that uses image-level
features and sentences describing observations such as fractures from the MIMIC-CXR dataset may be required to further improve clinical
accuracy.

B.5. Detailed anatomy-level results

Dataset Anatomical Region METEOR IoU Anatomical Region METEOR IoU

Chest ImaGenome

Abdomen 0.119 0.913 Right Apical Zone 0.157 0.863
Aortic Arch 0.127 0.759 Right Atrium 0.237 0.755
Cardiac Silhouette 0.110 0.837 Right Clavicle 0.290 0.849
Carina 0.229 0.542 Right Costophrenic Angle 0.264 0.819
Cavoatrial Junction 0.171 0.616 Right Hemidiaphragm 0.147 0.826
Left Apical Zone 0.157 0.873 Right Hilar Structures 0.104 0.882
Left Clavicle 0.294 0.841 Right Lower Lung Zone 0.051 0.897
Left Costophrenic Angle 0.270 0.858 Right Lung 0.104 0.925
Left Hemidiaphragm 0.074 0.796 Right Mid Lung Zone 0.083 0.893
Left Hilar Structures 0.108 0.875 Right Upper Lung Zone 0.066 0.920
Left Lower Lung Zone 0.054 0.881 Spine 0.165 0.950
Left Lung 0.105 0.920 SVC 0.162 0.790
Left Mid Lung Zone 0.089 0.894 Trachea 0.144 0.857
Left Upper Lung Zone 0.049 0.922 Upper Mediastinum 0.162 0.881
Mediastinum 0.119 0.870

Table 5. Detailed results of the anatomy-based sentence generation (evaluated using METEOR) and object detection (evaluated using the
IoU score) for each of the 29 anatomical regions.



C. Method
C.1. Module details

Object detector. Readers familiar with the Faster R-CNN
[15] architecture may wonder why our method does not use
RoI feature vectors (which are extracted from the RoI fea-
ture maps through fully connected layers in Faster R-CNN)
directly as our region visual features, since instead we apply
2D average pooling and a linear transformation to the RoI
feature maps to extract the region visual features. We found
that taking the RoI feature vectors directly as the region vi-
sual features hurt the object detector’s performance, which
we suspect is due to the coupling of features between the
object detector’s subsequent classifier and regressor and the
report generation model’s subsequent modules.
Language model. For the language model, we use
the GPT-2 implementation from the huggingface library
(transformers 4.19.2) [19] with the following checkpoint
[12]: https://huggingface.co/healx/gpt-2-
pubmed-medium.

C.2. Training

For the overall training loss (Eq. 3 of the main paper),
we specified that Lselect and Labnormal are weighted binary
cross-entropy losses for the region selection and abnormal-
ity classification modules. Based on statistics computed on
the training dataset, these weights for the positive examples
are set to 2.2 for Lselect and 6.0 for Labnormal to account for
class imbalances between regions with/without sentences
and that are abnormal/normal, respectively.

As mentioned in the main paper, the model is trained in
three stages:

1. Object detector

2. Object detector + region selection module
+ abnormality classification module

3. Full model end-to-end

During all three stages, we train on a single NVIDIA
A40 with PyTorch 1.12.1 in native mixed precision. The
total training took about 45 hours and up to 48 GB of GPU
memory was required. We refer to the code for more speci-
fications of dependencies and versions. We use the AdamW
[9] optimizer with a weight decay of 1e-2, reduce the learn-
ing rate by a factor of 0.5 if the total validation loss has
plateaued or decreased (compared to the best epoch), and
apply early stopping. In the first training stage, we use a
batch size of 16, an initial learning rate of 1e-3, and train
for 6 epochs. In the second training stage, we use a batch
size of 16, an initial learning rate of 5e-4, and train for 9
epochs. In the third training stage, we use a batch size of 2,
an initial learning rate of 5e-5, and train for 2 epochs. All
batch sizes are (gradient) accumulated to 64.

C.3. Inference

Sentence generation. We employ beam search with a
width of 4 for sentence generation and use a BERTScore
[22] threshold of 0.9 (based on best validation set perfor-
mance) to remove similar generated sentences in radiology
report generation. The high BERTScore value ensures ro-
bust duplicate removal, as only highly similar sentences are
deduplicated, minimizing the risk of eliminating relevant in-
formation. For BERTScore, we use the uncased base ver-
sion of DistilBERT [16] (distilbert-base-uncased).

D. Experimental Setup
D.1. Dataset and pre-processing

We use the recently released Chest ImaGenome v1.0.0
[3, 20, 21] dataset for training and evaluation of our pro-
posed model. The MIMIC-CXR [4, 5] dataset, from which
the Chest ImaGenome dataset is automatically constructed,
consists of 377,110 chest X-ray images corresponding
to 227,835 free-text radiology reports. The Chest Im-
aGenome contains automatically constructed scene graphs
for 242,072 of those MIMIC-CXR images. For the im-
ages themselves, we use the MIMIC-CXR-JPG v2.0.0 [6,7]
dataset, which is fully derived from MIMIC-CXR and con-
veniently offers the images in JPG format.

The following image data augmentations are applied
with 50% probability (each) during training:

• Color jitter of 20% brightness and contrast (satura-
tion and hue jittering are not used as chest X-rays are
single-channel greyscale images)

• Gaussian noise of zero mean and variance in the range
[10, 50]

• Affine transformation with translation up to ±2% of
the image height/width and rotation up to ±2°

For the sentences of the Chest ImaGenome dataset, we
always remove redundant whitespaces (as mentioned in the
main paper). In some cases, we noticed that sentences
assigned to regions contained superfluous, introductory
phrases (such as “UPRIGHT PORTABLE AP CHEST RA-
DIOGRAPH:”), which do not contain any relevant informa-
tion. We assumed that these phrases were erroneously ex-
tracted by the Chest ImaGenome dataset from the MIMIC-
CXR radiology reports and assigned to regions, thus they
are also removed.

D.2. Reference reports and processing

As described in the main paper, we use the findings
section of MIMIC-CXR radiology reports as our refer-
ence reports. To extract these sections, we use a text

https://huggingface.co/healx/gpt-2-pubmed-medium
https://huggingface.co/healx/gpt-2-pubmed-medium


extraction tool provided by the MIMIC-CXR dataset au-
thors: https://github.com/MIT-LCP/mimic-
cxr/tree/master/txt.

We emphasize that we do not apply any further process-
ing to these extracted reports. In contrast, some papers, such
as the two papers [11, 18] from 2022 in Tab. 1 of the main
paper, most likely applied additional processing to these ex-
tracted reports, including lowercasing all words. While [11]
details the applied processing, [18] does not provide this in-
formation, and no code is available for verification. How-
ever, their qualitative analysis showcases lowercased refer-
ence reports, leading us to believe that they did employ low-
ercasing.

Lowercasing can significantly impact natural language
generation (NLG) scores, particularly BLEU scores [14].
We discovered that when lowercasing reference reports,
our method produces these BLEU scores: BLEU-1: 0.400,
BLEU-2: 0.266, BLEU-3: 0.187, BLEU-4: 0.135 (∆+8.9%
against best baseline). METEOR and CE scores remain un-
changed, as lowercasing does not affect them.

We believe that this highlights another reason why NLG
metrics are ill-suited for evaluating radiology reports, as
scores heavily depend on the specific processing applied
to reference reports (since NLG metrics count matching n-
grams). In contrast, CE-metrics are processing-invariant,
as they compare disease presence status between reference
and generated reports, independent of sentence structure or
casing. Thus, CE metrics allow for a fairer comparison be-
tween methods while also capturing the diagnostic accuracy
of generated reports. Consequently, we encourage future ra-
diology report generation research to place greater emphasis
on CE metrics when evaluating generated reports.

D.3. Clinical efficacy metrics

Clinical efficacy (CE) metrics capture how semantically
coherent the generated and corresponding reference reports
are w.r.t. an array of prominent clinical observations. To en-
sure comparability of results, we specifically follow [10] in
calculating the CE scores micro averaged over five observa-
tions, and [11] in calculating the CE scores example-based
averaged over all 14 observations as follows: CheXbert [17]
- a BERT [2]-based information extraction system - is first
used to classify the status of 14 observations as either pos-
itive, negative, uncertain, or no mention for each generated
report and corresponding reference report. The observa-
tions consist of 12 types of diseases as well as ”Support
Devices” and ”No Finding”. Next, these multi-class clas-
sifications are converted to binary-class. [11] performs this
conversion by considering positive as the positive class, and
negative, uncertain and no mention as the negative class.
In contrast, [10] considers positive and uncertain the posi-
tive class, and negative and no mention the negative class.
Finally, [11] calculates the example-based precision, recall,

and F1 scores over all 14 observations by comparing the
classifications for each generated report and corresponding
reference report. In contrast, [10] calculates the micro aver-
age precision, recall, and F1 scores over a subset of 5 obser-
vations: atelectasis, cardiomegaly, consolidation, edema,
and pleural effusion. We follow each approach respectively
when comparing our results with the two works.

D.4. Variation sampling for evaluation of selection-
based sentence generation

The variation sampling experiments for the evaluation of
selection-based sentence generation, as showcased in Fig.
4 and with results shown in Fig. 5 from the main paper,
were conducted as follows. First, we select the first 1000
samples from the test set to reduce the required computa-
tional resources. We then use our (trained) RGRG model for
selection-based sentence generation inference (see the third
paragraph of Sec. 3.4 in the main paper) on this subset. In-
stead of letting radiologists manually draw bounding boxes,
we randomly modify the ground-truth bounding boxes from
those samples and use them during inference (i.e., pass them
through RoI pooling). We investigate three types of varia-
tions independently: position, aspect ratio, and scale of the
bounding boxes. For each of these cases, we run several ex-
periments with different degrees of random variations. For
a specific type of variation (i.e., position, aspect ratio, or
scale) and a degree of variation as defined by the 1-σ in-
terval (i.e., one standard deviation, as used in the x-axis of
Fig. 5 in the main paper), an experiment corresponds to a
single inference pass through all of the 1000 samples. We
compute the micro-averaged per-anatomy METEOR score
for each experiment and compare it to the default case with-
out any variations, i.e. inference on the 1000 samples using
the ground-truth bounding boxes.

In a single experiment, we sample the variation for each
anatomical region in each sample independently. Assume
the ground-truth box for an anatomical region is defined by
its upper left (x1, y1) and lower right (x2, y2) corners and
has width w = x2−x1 and height h = y2− y1. We sample
the (additive) position variations ∆x ∈ (−∞,+∞) and
∆y ∈ (−∞,+∞) for the given standard deviation σ from
a zero-mean normal distribution N as

∆x ∼ N (0, σ2) , ∆y ∼ N (0, σ2) , (1)

and then compute the modified box (x̂1, ŷ1, x̂2, ŷ2) by vary-
ing the original box additively in relation to its size as

x̂1 = x1 +∆x · w , x̂2 = x2 +∆x · w ,

ŷ1 = y1 +∆y · h , ŷ2 = y2 +∆y · h .
(2)

Aspect ratio and scale are varied multiplicatively and we,
therefore, sample from the normal distribution in log-space
(of aspect ratio or scale variations). In other words, the

https://github.com/MIT-LCP/mimic-cxr/tree/master/txt
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt


variations are Lognormal distributed. The (multiplicative)
aspect ratio variation ∆a ∈ (0,+∞) is sampled as

∆a ∼ Lognormal(0, σ2) , (3)

i.e.

ln(∆a) ∼ N (0, σ2) , (4)

and similarly, the (multiplicative) scale variation ∆s ∈
(0,+∞) is sampled as

∆s ∼ Lognormal(0, σ2) . (5)

The 1-σ interval for both cases is therefore defined as
[e−σ, eσ]. Given a sampled aspect ratio variation ∆a and
a ground-truth box (x1, y1, x2, y2) with aspect ratio a = w

h
and area A = w · h, we first compute the modified aspect
ratio â as

â = ∆a · a , (6)

then compute the modified width ŵ and height ĥ using the
unmodified area A as

ŵ =
√
A · â , ĥ =

√
A

â
, (7)

to finally compute the modified box as

x̂1 = x1 +
w − ŵ

2
x̂2 = x2 −

w − ŵ

2
,

ŷ1 = y1 +
h− ĥ

2
ŷ2 = y2 −

h− ĥ

2
.

(8)

Similarly, given a sampled scale variation ∆s, we first com-
pute the updated width and height as

ŵ = ∆s · w , ĥ = ∆s · h , (9)

and then again use (8) to compute the modified box.
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