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1. Extended Discussion on Probability Regu-
larization

In this section, we give a comprehensive overview on the
difference between probability regularization and Distribu-
tion Alignment.

We develop this discussion under the scope of an episode
of few-shot classification, namely the support set Ds =

{(xi,yi)}Ns
i=1 and the query set Dq = {(xi)}

Nq

i=1; Ns and
Nq are the total number of samples in support set and query
set, respectively. The marginal distribution of class vari-
ables can be estimated separately from the support set and
the query set as:

ÊDs
[pθ(y|x)] =

1

Ns

∑
x∈Ds

pθ(y|x) (1)

ÊDq [pθ(y|x)] =
1

Nq

∑
x∈Dq

pθ(y|x) (2)

And if considering all available data:

ÊDs∪Dq
[pθ(y|x)] =

Ns

Ns +Nq
ÊDs

[pθ(y|x)]

+
Nq

Nq +Ns
ÊDq

[pθ(y|x)]

(3)

The previous work [1] in semi-supervised learning pro-
poses a formulation to conduct distribution alignment as:

q̃ = Normalize(q
p(y)

p̂(y)
), (4)

where p(y) is the marginal distribution of the class vari-
able y and p̂(y) is its estimation. q refers to the probability
of an unlabeled sample. And Normalize(xi) =

xi∑
j xj

.

Case 1: p̂(y) = ÊDq [pθ(y|x)] and p(y) =

ÊDs
[pθ(y|x)] refers to Est. + All Query. Case 1 equals the

original DA in [1], which aligns the marginal distribution of
unlabeled data to the labeled data.

Case 2: p̂(y) = ÊDq [pθ(y|x)] and p(y) = U refers to
Uni. + All Query.

For both Case 1 and Case 2, an assumption that the test-
ing distribution is the same as the prior distribution p(y) is
explicitly made. However, this assumption limits the algo-
rithm’s generalization by only considering a uniform testing
distribution. We discuss these two cases together as the only
difference is p(y) as Uniform or not.

For these cases, all query samples share the same scale
vector: p(y)

Êx∪Ds [pθ(y|x)]
, under which the marginal distribu-

tion of testing set is changed accordingly:

ÊDq
[pθ(y|x)] ∼

1

Nq

∑
x∈Dq

p(y)

ÊDs
[pθ(y|x)]

pθ(y|x) (5)

The Normalize is omitted to simplify the expression (∼
is used accordingly). ÊDq

[pθ(y|x)] → p(y) and the overall
estimated marginal distribution is:

ÊDs∪Dq
[pθ(y|x)] ∼

Ns

Ns +Nq
ÊDs

[pθ(y|x)]+
Nq

Nq +Ns
p(y)

(6)
For Case 1 and Case 2, the estimated marginal distribu-

tion of labeled data remains unchanged while the marginal
distribution of testing data is forced to approach a prior p(y)
either a Uniform distribution or the same marginal distribu-
tion with labeled data.

Case 3: p̂(y) = Êx∪Ds
[pθ(y|x)] and p(y) = U refers

to Uni. + Single Query. This case is our proposed proba-
bility regularization, where p̂(y) is estimated by combining
each testing data with the full support set to avert making
any assumption on the testing distribution.

Probability regularization allows a unique scale vector to
adjust the predicted probability for each testing data, under
which the marginal distribution of the testing set is changed
as:

1



ÊDq
[pθ(y|x)] ∼

1

Nq

∑
x∈Dq

U
Êx∪Ds [pθ(y|x)]

pθ(y|x) (7)

The estimated marginal probability with each query sam-
ple xq and the full support set can be expanded as:

Êxq∪Ds [pθ(y|x)] =
1

1 +Ns
[pθ(y|xq) +

∑
x∈∪Ds

pθ(y|x)]

=
pθ(y|xq)

1 +Ns
+

Ns

1 +Ns
ÊDs

[pθ(y|x)]

(8)

And the overall estimated marginal distribution can be
approximately expressed as:

ÊDs∪Dq
[pθ(y|x)] ∼

Ns

Ns +Nq
ÊDs

[pθ(y|x)]

+
1

Nq +Ns

∑
x∈Dq

U
Êx∪Ds

[pθ(y|x)]
pθ(y|x)

∼ Ns

Ns +Nq
ÊDs

[pθ(y|x)]

− 1 +Ns

Nq +Ns

∑
x∈Dq

ÊDs
[pθ(y|x)]

pθ(y|x) + ÊDs
[pθ(y|x)]

+
1 +Ns

Nq +Ns
Êxq∪Ds

[pθ(y|x)]

(9)

By using probability regularization, Êx∪Ds
[pθ(y|x)] is

aligned to Uniform, which doesn’t imply a distribution as-
sumption on the testing data and ÊDs [pθ(y|x)] is implic-
itly adjusted as well. In doing so, the class-wise balance is
improved, and the distribution alignment of testing data is
achieved without introducing any prior assumption on the
overall testing set.

2. Re-visiting Transductive Finetuning
In [2], the entropy loss is not directly applied to the fea-

ture space but to the predicted probability of base classes
(the logit space). We first benchmark the performance of
entropy loss directly on the feature space.

As we claimed in the main paper, there are two ways
of constructing the entropy loss for unlabeled data, namely,
using soft labels or using pseudo-labels. Formally, Lq(x)
for the unlabeled query set is:

Lq(x) = λH(ŷ, pθ(y|x)), (10)

Where λ denotes the loss weight and ŷ is generated from the
model’s own predictions on the query set. And We denote

pθ(y|x) as the softmax probability distribution output from
the model on C classes:

pθ(y = c|x) = exp zc∑C
i=1 exp zi

, (11)

And pθ(y|x) = [p1, pi, ...], i ∈ [0, C].
When ŷ = argmax(pθ(y|x)), which is referred as

pseudo-labels, and under this situation, Lq(x) is the cross-
entropy loss. For a sample (x, y):

L = λ(− log py) (12)

When ŷ = pθ(y|x), it is noted as soft-labels. And using
soft-labels, Lq(x) is the entropy loss:

L = λ(−
C∑
i

pi log pi) = λ(−py log py −
C∑

i,i ̸=y

log pi)

(13)
Compared with Eq. 12, the Entropy-loss in Eq. 13 can be

viewed as a weighted cross-entropy loss on the ground-truth
prediction (py log py) with the other parts of

∑C
i,i ̸=y log pi.

Especially for py log py , the predicted probability py serves
as ”the loss weight” for log py .

As shown in Table. 1, directly using soft labels leads to
better performance than directly using pseudo-labels. How-
ever, pseudo-labels with per-sample loss weights can indeed
boost performance, while soft labels with per-sample loss
weights drop the performance. As illustrated above, us-
ing soft labels in entropy loss serves as utilizing the pre-
dicted probability to weight the gradient from the ground-
truth class, namely the part py log py in Eq. 13. Thus further
applying the per-sample weights actually makes the gradi-
ent from the ground-truth class even smaller while the other
part of the loss

∑C
i,i ̸=y log pi weakens the information to

lead the optimization towards correct predictions. Using
pseudo-labels with per-sample weights reduces the effect
of possibly wrong predictions, while the cross-entropy loss
gradients from the possibly correct samples still determine
the optimization. This explains why pseudo-labels can work
with per-sample loss weights while soft-labels themselves
perform strongly but are weakened by adding per-sample
loss weights.

3. Extended Details on Margin-based Uncer-
tainty Weighting

Formally, for one sample we denote p = [p1, p2, ..., pc]
as the simplification of pθ(y|x) and, without losing general-
ization, we assume p1 ≤ p2 ≤ ... ≤ pc. We define the value
difference between the maximum probability and the others
as ∆pi = pc − pi, i ∈ [1, ..., c]. And the difference between
the top-2 maximum probabilities is specifically defined as
∆̂p.



Method weighting ILSVRC Omni Acraft Birds DTD Fungi Flower Sign COCO
soft-labels 60.19 78.76 62.71 79.22 77.6 49.99 91.82 70.54 61.55

pseudo-labels 59.19 73.71 57.56 77.53 75.63 48.18 90.14 60.42 58.82
soft-labels ✓ 59.93 78.26 71.73 78.34 75.96 48.94 92.48 76.53 59.05

pseudo-labels ✓ 61.49 81.64 68.88 80.23 78.55 50.72 92.67 73.96 60.09

Table 1. Ablation Results of Soft-labels and Pseudo-labels w/o Margin-based Uncertainty Weighting.

With a fixed pc, the range of ∆p̂ relates to pc. Specifi-
cally, the max(∆p̂) happens in the situation that except the
confidence (the maximum probability pc), the other proba-
bilities share the same value p1 = p2 = ... = pc−1 = 1−pc

C−1 .
And min(∆p̂) is in the situation that the second maximum
probability carries the value pc−1 = 1 − pc and the other
probabilities are 0. This can be formally expressed as:{

∆p̂ ∈ [2pc − 1, pc − 1−pc

C−1 ], pc ≥ 0.5

∆p̂ ∈ [0, pc − 1−pc

C−1 ], pc < 0.5
(14)

The normalized entropy we introduced in the main paper
is:

e(p) = −
∑c

i (pi log pi)

log c
(15)

where
∑c

i pi = 1 and c is the number of classes.
When pc is fixed, the minimum and maximum value of

∆p̂ are: (∆p̂)min = pc − (1− pc), (∆p̂)max = pc − 1−pc

c−1 .
For (∆p̂)min , the entropy uncertainty score is:

e(∆p̂)min
= −pc log pc + (1− pc) log(1− pc)

log c
(16)

For (∆p̂)max, the entropy uncertainty score is:

e(∆p)max
= −

pc log pc +
∑c−1

i ( 1−pc

c−1 log 1−pc

c−1 )

log c
(17)

= −
pc log pc + (1− pc) log(

1−pc

c−1 )

log c

= e(∆p)min
+

(1− pc) log(c− 1)

log c

Given the same confidence pc, entropy score refers to
larger uncertainty of largest margin (∆p̂)max compared
with smallest margin (∆p̂)min. However, (∆p̂)max actu-
ally refers to the largest difference between top-2 maximum
probabilities that the sample is most certain to its predic-
tion. As we discussed in the main paper, the entropy score
is contradictory to the uncertainty information given by the
margin. We give a theoretical view of the contradiction in
the following.

Eq. 15 can be further formalized with ∆pi:

e(p) = −
∑c

i (pi log pi)

log c
(18)

= −
∑c

i (pc −∆pi) log(pc −∆pi)

log c

≥ −
∑c

i (pc −∆pi) log pc
log c

= −
log pc

∑c
i (pc −∆pi)

log c

The importance of margin ∆̂p is weakened by adding
pc −∆pi. This is supported by the empirical results of uti-
lizing top-k probabilities in the entropy-related weights.

4. Extended Illustration
Q1. Will the usage of Uniform testing set in the ob-

servation lead to imbalanced predictions?: Using uni-
form testing distribution ensures that the testing distribution
will not affect the quantification of pre-class predictions.
Meanwhile, the imbalanced prediction would be more se-
vere when the test distribution is non-uniform. The ob-
servation in Figure 2 (before TF-MP) shows that there are
some classes obtain much fewer predictions than others. If
a testing scenario is constructed by samples from the class
of the least number of predictions (2 predictions for 10 test-
ing samples in Figure 2 (before TF-MP)), the accuracy is
upper-bounded by the number of predictions (0.2).

Q2. A more balanced prediction does not equal a
higher accuracy: As the practical testing environment
could involve different data distributions, solving class-
imbalanced predictions would make the algorithm more ro-
bust to different testing scenarios. For example: if all im-
ages from the testing set are from those classes with the
least predictions (e.g. 2 predictions for 10 testing samples),
the accuracy is upper-bounded by the number of predictions
(only 0.2). In this case, improving class-imbalanced predic-
tions is beneficial to improve accuracy. Meanwhile, TF-MP
encourages a more balanced prediction during fine-tuning,
actively guiding the model to learn classes fairly. Improving
the model training is expected to improve the accuracy. The
experimental results well support that by solving the class-
imbalanced predictions through TF-MP, our method brings
a consistent accuracy boost over datasets from different do-
mains(2.39 % on average, Table.1 main paper) and different
shots compared with inductive fine-tuning.
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Figure 1. (a). The confidence distribution of correct and wrong predictions on the testing set. Results are averaged using 100 episodes
for each dataset in Meta-Dataset. For samples with correct predictions, the average confidence is only 0.4, which makes it incapable of
applying a hard threshold of confidence to select unlabeled data during transductive finetuning as used in FixMatch [3]. (b). Utilization
of wrong predictions using Entropy loss weights and Margin-Based uncertainty loss weights during transductive-finetuning. Compared
with entropy loss weights, utilizing margin-based uncertainty weights could largely reduce the utilization of wrong predictions for different
datasets. Results are averaged over 600 episodes.
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