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1. Datasets
1.1. Training data

Normalized pixel counts for the 17 distinct classes found
in the Germany dataset [5] are presented in Fig.1. In ex-
periments, we use the 2016 data which consist of 27k train-
ing and 8.5k evaluation samples of size 24 x 24 pixels with
13 image bands. To construct the classification dataset we
simply select all samples whose center pixel locations, at
indices (12:13, 12:13), belong to the same class (to avoid
ambiguities in sample class attribution) assuming it is not
the background class. We keep training and evaluation data
splits the same as the segmentation set. Finally, we discard
four object classes (hop, beans, soybeans, peas) that now
consist of less than 100 samples in the training data. This
leaves us with 13k and 4k training and evaluation samples
respectively whose class distribution is shown in Fig.1.

Equivalently, the T31TFM-1618 dataset [6] contains
120k and 20k training and evaluation samples of size 48 x 48
with 13 image bands and 20 distinct classes. Per-class nor-
malized pixel counts are presented in Fig.3. To construct
the classification dataset we follow the same strategy as de-
scribed above for Germany, we select only samples whose
2 x 2 center region is occupied by the same class, assuming
it is not the background class. We further exclude two land
cover types (JSM, MC7) with less than 50 samples in the
training set, leaving us with 45k and 8k training and evalu-
ation samples whose class distribution is shown in Fig.3.

The PASTIS dataset [!] contains 2.4k satellite image
timeseries (SITS) samples of size 128 x 128 each with 33-
61 temporal acquisitions and 10 image bands. To reduce
computational requirements during experiments, we split
PASTIS samples into 24 x 24 patches in space while re-
taining all acquisition times. This allows us to retain as
much information as possible with respect to the original
dataset; while losing acquisitions would alter the informa-
tion content of data samples, model outputs can always be
reassembled back into original dimensions. Besides, we
have empirically found from experiments in Germany that
there is no performance drop in training with small size in-

puts. An image size 24 x 24 was selected as it fits the
dimension requirements of all tested models: 1) it can be
used with patch sizes 2, 3, 4, 6 with the Temporo-Spatial
Vision Transformer (TSViT), 2) it is a multiple of 8 which
makes it suitable for the CNN-based architectures tested,
e.g. a 24 x 24 size input to UNET3D leads to residual de-
coder feature maps matching the dimensions of respective
encoder maps. In total, we get 60.5k samples of size 24 x 24
matching the original data splits. To accommodate a large
set of experiments we only use fold-1 among the five folds
provided in PASTIS. This corresponds to provided sets 1,
2, 3 used for training (36.5k samples), 4 for evaluation (12k
samples) and 5 as a test set (12k samples). To directly com-
pare with [1] we further train TSViT on all 5 folds. In ex-
periments with PASTIS we treat the background class as
another crop type to predict, while masking the effect of the
void label from the training loss and evaluation metrics. We
report the performance on the test data of the model found
to perform best on the evaluation set. To make the PASTIS
classification dataset we took advantage of the object in-
stance ids provided to extract 24 x 24 pixel regions whose
center pixel falls inside each object and use the class of this
object as the sample class. As a result, the PASTIS classi-
fication dataset contains 34k training, 11.5k evaluation and
11.5k test samples and all the classes found in the segmen-
tation set. Pixel and parcel class counts for the segmentation
and classification datasets can be seen in Fig.2.

1.2. Per-class distribution of neighbours

In section 3.4 we presented our motivation for the de-
sign of the TSVIT encoder, arguing that the use of spa-
tial patterns in crop recognition is undermined by the lack
of structure with respect to the relative positioning of crop
types within an area of interest. We further hypothesize that
the spatial distribution of crop types is independent of their
proximity to other crop types over large regions, i.e. what
grows in one location does not provide generalizable infor-
mation about what grows in nearby locations. to test this
hypothesis we use the T31TFM S2 tile in France for years
2016 to 2018, covering a 100km x 100km region. For this
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Figure 1. Distribution of ground truth classes for the Germany dataset [5]. (left) semantic segmentation data. Circled ground truths

are not included in classification data. (right) object classification data.
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Figure 2. Distribution of ground truth classes for the PASTIS dataset [ 1]. (left) semantic segmentation data. (right) object classification
data.
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Figure 3. Distribution of ground truth classes for the T31TFM-1618 dataset [6]. (left) semantic segmentation data. Circled ground

truths are not included in classification data. (right) object classification data.
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Figure 4. For each object id in our AOI, we find the distribution of crop types in a 1km square region around the center of th eobject.
All such distributions are aggregated according to the crop type of the center object. We use the cosine similarity (Fig.5) between these
distributions and unconditional pixel counts over the extent of the AOI as a measure of the spatial dependence between crop types.
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Figure 5. Cosine similarities between conditional and uncondi-
tional class counts.

area of interest we have obtained crop type ground truths
in the form of geopolygons provided by the RPG' dataset.
We we only keep crop types with more than 100k pixels
and rasterize these polygons using [7] to create two maps
for instance identities and crop types. For each object id we
count the number of pixels per crop type in a 1km square
region from the center of the object. All class pixel counts
are then aggregated by crop type to get a list of 19 con-

Uhttps://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-
rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-
majoritaire/

ditional crop type distributions. This process is presented
schematically in Fig.4. We also calculate an unconditional
distribution of pixels by counting the number of pixels per
class over the extent of the AOIL. We use the cosine simi-
larity between class-conditional pixel counts and uncondi-
tional pixel counts as a meassure of the similarity between
the these distribution. Results, visualized in Fig.5, show the
cosine similarities to be close to 1 indicating strong corre-
lation between the class-conditional and class-independent
distribution of counts, which suggests that proximity to a
specific class does not have a major effect on the distribu-
tion of crop types. We note how class VRC (vines) devi-
ates from the remaining classes in that respect. However,
a cosine similarity around 0.5 still indicates a high degree
of correlation between the two distributions and, observing
the confusion matrices in Fig.9 we note that VRC is actually
one of the best predicted classes.

2. Training and evaluation
2.1. Training details

As discussed in section 4, for all experiments presented
we train for the same number of epochs using the provided
data splits from respective publications. The TSVIT training
schedule employs the AdamW optimizer [2] with a linear
warmup of the learning rate from zero to a maximum value
103 at epoch 10, followed by cosine learning rate decay [4]
down to 5 * 1076 at the end of training. To exclude the
effect of our training settings on performance metrics and
avoid issues of convergence for other methods we also train
using the suggested training settings from each respective



Ablation settings | mIoU | #params (M) IT (ms)

Factorization order Spatial & Temporal 48.8 2.05 6.13
Temporal & Spatial 78.5 1.66 4.67
1 78.5 1.66 4.67
frels tokens K 83.6 1.6 5.78
Position encodings Static . 80.8 1.62 5.76
Transformer encodings | 81.2 2.44 12.45
Date lookup 83.6 1.66 5.78
temporal spatial
Interactions between v v 81.5 1.66 9.82
cls tokens v X 83.6 1.66 5.78
2x2 84.8 1.66 11.8
Patch size 3x3 83.6 1.66 5.78
4 x4 81.5 1.66 3.85
6 x 6 79.6 1.70 3.80
64 81.2 0.57 4.41
Feature dimension 128 83.6 1.66 5.78
256 83.7 541 9.45
64 82.8 1.39 5.60
MSA feature dimension 128 83.6 1.66 5.78
256 83.6 2.18 6.93
1 82.5 1.66 5.78
# MSA heads 2 82.9 1.66 5.78
4 83.6 1.66 5.78
8 83.6 1.66 5.78
Adam-fixed 81.0 1.66 5.78
Training schedule Adam-exp. 82.5 1.66 5.78
wAdam-cos(1warm) 82.8 1.66 5.78
wAdam-cos(10warm) 83.6 1.66 5.78
temporal spatial
. O(])):gghchs) 2 0 416 0.46 2.50
4 0 42.7 0.86 4.30
6 0 43.1 1.25 6.76
8 0 42.8 1.65 8.59
2 2 81.8 0.87 3.08
4 2 83.3 1.26 5.43
6 2 83.5 1.66 7.47
8 2 83.6 2.05 9.42
2 4 82.9 1.26 3.74
4 4 834 1.66 5.78
6 4 83.6 2.05 8.00
8 4 83.9 245 10.02
2 6 83.3 1.66 543
4 6 83.5 2.05 6.94
6 6 84.1 2.45 8.68
8 6 84.4 2.84 10.70

Table 1. Additional ablation on design choices for TSViT. All models are trained using the Germany dataset for 150 epochs unless
otherwise indicated (depth ablation). For each model we note its number of parameters (#params. x10°) and inference time (IT) for a
single sample with T=52, H,W=24 and C=13 size input on a Nvidia Titan Xp GPU.
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Figure 6. Date lookup vs Static position encodings for a varying
number of timestamps T in Germany.

study and report best performances among training rounds
for each model. In particular:

 for Germany we train for 150 epochs with a learning
rate 10~ and exponential weight decay with a factor
0.975 applied every two epochs according to [6].

e for T31TFM16-18 we train for 100 epochs with a
learning rate 10~ and exponential weight decay with
a factor 0.975 applied every two epochs according to

[6].

 for PASTIS we train for 100 epochs with a constant
learning rate 10~3 according to [1].

We always use the largest number of samples that can fit
into x2 Nvidia Titan Xp GPUs in a data parallel fashion.
Using a patch size h = w = 2 and four layers for the
temporal and spatial encoders this is 32 for Germany, 16
for PASTIS (includes more acquisition times) and 6 for
T31TFM-1618 (larger sample size 48). For the T31TFM-
1618 dataset a model with 8 temporal and 4 spatial encoder
layers, patch size h = w = 3, and same settings otherwise,
can be trained with batch size 16 and reach similar perfor-
mances (mloU 62.8% vs 63.1%).

2.2. Additional ablations

In section 4.2 we presented the results of an ablation
study on the most important design choices for TSViT us-
ing the Germany dataset [5]. These results are also pre-
sented here, in the top part of Table 1. Additional results
are presented in the bottom part of Table 1. To obtain these
numbers our design utilises all choices that were found to
benefit performance in section 4.2, excluding the patch size,
we now use (3 X 3) patches to increase the speed of exper-
iments. In addition to ablation results, we also present the
number of parameters and inference time for each model
tested to show how our design choices affect these values.
To calculate the inference time we assume a single sample
input with size T=52, HW=24, C=13 for a direct compar-
ison with inference times presented in Table 2 in the main

paper. Inference time is measured as the average of 300
repetitions following a warm up period for the GPU. Dur-
ing each repetition we synchronize the GPU with the CPU
such that time is measured only after the process running
on the GPU has been completed. We test the effect of our
date-specific position encodings compared to a fixed set
of values and find a significant —2.8% performance drop
from using fixed size Pt compared to our proposed lookup
encodings. Our position encoding module benefits more
compared to a static one when there is a lot of variation in
timestamps as each static encoding will need to represent a
wider range of dates. If there is no variation in dates among
samples then each static encoding will only need to repre-
sent a single date making the two approaches equivalent.
To show this effect we in/decrease the variation in sample
dates by selecting different number of timestamps (T) for
each training session. Decreasing T allows for more com-
binations of dates, leading to increased variation in terms
of timestamps seen per position encoding. As shown in
Fig.6 improvements are indeed more pronounced for small
values of T. We further test the capacity of a small Trans-
former model in generating dynamic temporal position en-
codings from one-hot day-of-year (doy) encodings. This in-
creases the model’s parameter count and inference time but
is ultimately outperformed by the lookup encodings. Using
(3 x 3) patches, in order to retain an uncompressed rep-
resentation of the size 3 x 3 x 13 = 117 inputs, we will
need to employ a feature dimension greater or equal to
that value. We find that d = 64 leads to a noticeable per-
formance drop, while d = 256 brings no clear benefits, so
we retain d = 128 going forward. Regarding the MSA fea-
ture dimension, again, we find that an inverted bottleneck
design with 256 features brings no performance gains w.r.t.
size 128 MSA features. A bottleneck design with half the
number of features (64) underperforms both options. We
proceed with 128 features for the MSA operations. Train-
ing our model with a varying number of MSA heads, we
find that while using too few heads is suboptimal, there are
little gains from increasing that number beyond four, thus,
we proceed with our initial design. Regarding the choice of
optimization algorithm, apart from our proposed settings,
commonly used for training Transformers, we also test the
effect of training settings typically used in the land cover
and crop recognition literature. These consist of using the
Adam [3] optimizer and a fixed learning rate [ | ] or exponen-
tial decay [0]. We find that both settings reach suboptimal
performance compared to our proposed settings. Addition-
ally, we find that this can mostly be attributed to the linear
learning rate warmup employed in the begginning of train-
ing. More specifically, we start with a zero value for the
learning rate and linearly increase it up to a predefined value
at a specific time during training; after this point the learn-
ing rate decreases following a one cycle cosine decay. We



observe that reducing the number of warmup epochs from
10 to 1 causes a significant reduction in performance by
—0.8% mlIoU which is very close to what is achieved by an
exponential decay setting with no warmup. Finally, we do
a full factorial design on encoder depths using [2,4, 6, §]
and [0, 2, 4, 6] layers for the temporal and spatial encoders.
We observe that not using a spatial encoder (L = 0) leads to
very large performance drops independent of the temporal
encoder depth. Excluding these results, we find that the best
performance predictor is the total number of layers and that
the depth of each submodule has a similar effect.

2.3. Additional results

In Figs.7, 8 and 9 we respectively show confusion matri-
ces for Germany, PASTIS and the T31TFM-1618 datasets.
In Germany, all classes are predicted with a high degree
of accuracy. We observe some degree of confusion be-
tween crop types that grow during the same period, e.g.
“winter rye”, “winter wheat”, “winter spelt”, “winter bar-
ley” or “summer oat”, “summer barley”. In PASTIS and
T31TFM-1618, model performance is significantly lower,
however, the main driver of performance degradation with
respect to Germany can be attributed to some bad perform-
ing classes, especially so for the T31TFM-1618 dataset. For
a qualitative assessment of semantic segmentation models,
we present illustrations of semantic segmentation predic-
tions for the three best models in Germany, PASTIS and
T31TFM-1618 in Figs.10, 11 and 12.

References

[1] Vivien Sainte Fare Garnot and Loic Landrieu. Panoptic seg-
mentation of satellite image time series with convolutional
temporal attention networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
48724881, October 2021. 1,2, 5

[2] Loshchilov Ilya, Hutter Frank, et al. Decoupled weight decay
regularization. Proceedings of ICLR, 2019. 3

[3] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations, 12 2014. 5

[4] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. 3

[5] Marc RuBwurm and Marco Korner. Multi-temporal land cover
classification with sequential recurrent encoders. ISPRS Inter-
national Journal of Geo-Information, 7(4):129, Mar 2018. 1,
2,5

[6] Michail Tarasiou, Riza Alp Giiler, and Stefanos Zafeiriou.
Context-self contrastive pre-training for crop type semantic
segmentation. IEEE Transactions on Geoscience and Remote
Sensing, pages 1-1,2022. 1,2, 5

[7] Michail Tarasiou and Stefanos Zafeiriou. Deepsatdata: Build-
ing large scale datasets of satellite images for training ma-
chine learning models. In IGARSS 2022 - 2022 IEEE Inter-

national Geoscience and Remote Sensing Symposium, pages
4070-4073, 2022. 3



sugar beet ]

summer oat
meadow

rape

hop

winter spelt
winter triticale
beans

peas

potatoe
soybeans
asparagus
winter wheat
winter barley
winter rye
summer barley
maize

Figure 7. Confusion matrices for Germany. (left) Semantic segmentation. (right) Object classification.
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Figure 8. Confusion matrices for PASTIS. (left) Semantic segmentation. (right) Object classification.
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Figure 10. Qualitative examples for Germany. Black ”x” indicates a false prediction at that particular location.
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Figure 11. Qualitative examples for PASTIS. Black ”x” indicates a false prediction at that particular location.
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Figure 12. Qualitative examples for T31TFM1618. Black ”x” indicates a false prediction at that particular location.



