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1. Parameters exploration
The first parameter considered is the size of the sliding

window used for local entropy calculation. The recovery
rate and average precision for each window size considered
is shown in Figure 1.
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Figure 1. Robust Average Precision for different window sizes

These results show that beyond a certain size, the chosen
window generates an imprecise inpainting mask, leading to
lower recovery rates. This phenomenon is also observed
for very small window sizes, as the entropy of smaller win-
dows is more likely to be below the inpainting threshold.
These results show that there is an optimal window size
that corresponds to the image’s resolution. Therefore, us-
ing a static window size is counterproductive; We adopt a
dynamic window size equal to 1% of the images largest di-
mension, with a minimum size of 8 pixels.

The second parameter we explore is the stride of the local
entropy window. We use the same sample dataset as the
previous experiment and a window size of 8 pixels. The
results are show in Table 1.

The results show that lowering the window stride leads
to a better performing defense, as a more granular local en-
tropy calculation results in a more accurate inpainting mask.
However, beyond a certain point, the improvements brought
by lowering the window stride are quickly outpaced by the
negative effect of exponentially increasing the number of
entropy calculations. Therefore, we set the window stride

Table 1. Effect of window stride on defense performance

Stride 1 4 8

Clean 100% 100% 100%
Patch Success Rate 72.20% 72.20% 72.20%
Detected Patches 92,20% 90.50% 87.45%
Robust Avg Precision 81.50% 79.73% 75.35%

to be equal to half of the window size as this value keeps
most of the performance gains from lowering the window
stride while keeping calculation time reasonable.

2. Alternate method for creating the patch
mask

An earlier version of our work investigated an alternate
method of creating the mask that locates the adversarial
patch. This method follows the same framework as our
main proposed approach, but the methods for determining
the high entropy kernels and obtaining the full shape of the
patch differ:

First, to determine the locations of high entropy kernels,
a local entropy heatmap is established using a sliding win-
dow, and the kernels are located by keeping only the peaks
of this heatmap: Only windows whose entropy value ex-
ceeds the top-k% of the maximum entropy value are con-
sidered as high entropy kernels, the rest of the heatmap is
discarded.

Next, instead of using an autoencoder to determine the
final mask, we ”expand” our kernels to fit the shape of the
adversarial patch: We compare each high entropy kernel
with the windows that surround it, in an n-window radius
using a similarity metric. If the neighboring window is sim-
ilar to the high entropy kernel, it is added to the final patch
mask.

The similarity metric we use in this method is mutual in-
formation. For each kernel, we determine the self-mutual
information of the kernel as a baseline, and we compare
the mutual information between the high entropy kernel and
candidate window for expansion. If the ratio of this mutual
information value relative to the self-mutual information is
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Table 2. Performance of the alternative patch localization method
with comparison to the main method

Experiment Metric Main Alternative

ImageNet
+ [3]
+ InceptionV3

Robust Accuracy 55.26% 51.36%

Recovery Rate 75.26% 70.45%

Pascal VOC 07
+ [1]
+ ResNet50

Robust Accuracy 66.40% 66.60%

Recovery Rate 82.74% 83.51%

CASIA
+ [7]
+ YOLOv2

Robust Avg 88.21% 70.52%
Precision
Recovery Rate 94.38% 84.15%

higher than the threshold. The candidate window is consid-
ered as part of the adversarial patch.

These two steps produce a mask that shows the location
of the adversarial patch, we then filter this mask and use it
to apply the inpainting method in the same way as discussed
in Section 3.3 of the main paper that presents our main pro-
posed approach.

The performance of this alternative approach and the dif-
ference in recovery rates when compared against our main
method are show in table 2:

This method’s results are inferior in most cases to our
main method’s results, and equal in the best of cases. Fur-
thermore, this approach may have some scalability issues,
especially in images with higher resolutions and when us-
ing smaller window sizes or when there is a large number of
high entropy kernels in the image. Nonetheless, this alter-
native approach may have its merits in situations where it is
impractical to use an autoencoder or if preparing the clean
dataset entropy distribution is not possible.

3. Illustration of entropy budget on the gener-
ated patches

(a) No entropy limit (b) Entropy = 7 (c) Entropy = 5

Figure 2. Samples of the adaptive patch under entropy limits

4. Evaluation for different patch sizes
Adversarial patches’ size is a hyper-parameter fixed in

the noise generation process, it has a significant impact on
the attack efficiency. Therefore it is necessary to evaluate

our defense against a variety of patch sizes. In Figure 3 we
repeat the experiments on CASIA with the different patch
sizes relative to the bounding box width.
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Figure 3. Robust Average Precision for different patch sizes

As expected, patch success rate increases with patch size,
however while the recovery rate is lower for bigger patch
size, the drop is small relative to the patch size: The re-
covery rate is still high even when the adversarial patch is
extremely large. Notice that excessively large patches can
be impractical in a real-life scenario.

5. Full result tables
In this subsection of the supplementary materials, we in-

clude the full tables with detailed results of each CNN and
adversarial patch we have applied to the four datasets used
in our evaluation:

• ImageNet results are shown in table 3

• Pascal VOC 07 results are shown in table 4

• CASIA results are shown in table 5

• INRIA results are shown in table 6



Table 3. Evaluation results for the experiments performed on ImageNet

Patch: [1], trained on Imagenet

Classifier VGG-16 VGG-19 ResNet-18 ResNet-50 ResNet-101 InceptionV3

Clean Accuracy 68.80% 69.87% 66.56% 74.10% 75.53% 67.65%
Patch Success Rate 31.16% 31.96% 29.34% 49.02% 31.05% 23.10%
Adversarial Accuracy 50.04% 50.37% 50.45% 39.26% 54.45% 54.93%

Patch Detection Rate 85.31% 85.31% 85.31% 85.31% 85.31% 85.31%
Robust Accuracy 57.86% 58.53% 58.20% 64.34% 66.28% 59.09%
Recovery Rate 45.18% 44.75% 49.87% 66.95% 55.22% 43.72%
Lost Predictions 5.38% 4.88% 5.15% 2.77% 3.48% 5.98%

Patch: [3], trained on Imagenet

Classifier VGG-16 VGG-19 ResNet-18 ResNet-50 ResNet-101 InceptionV3

Clean Accuracy 68.80% 69.87% 66.56% 74.10% 75.53% 67.65%
Patch Success Rate 25.86% 29.33% 28.00% 19.57% 20.52% 93.22%
Adversarial Accuracy 54.30% 52.43% 51.31% 62.61% 62.76% 4.82%

Patch Detection Rate 89.22% 89.22% 89.22% 89.22% 89.22% 89.22%
Robust Accuracy 58.73% 58.50% 58.37% 65.72% 66.68% 55.26%
Recovery Rate 38.54% 41.29% 46.65% 36.03% 39.47% 75.26%
Lost Predictions 5.10% 6.09% 3.78% 4.28% 4.63% 3.33%



Table 4. Evaluation results for the experiments performed on Pascal VOC 07

Patch: [1], trained on Imagenet

Classifier VGG-16 VGG-19 ResNet-18 ResNet-50 ResNet-101 InceptionV3

Clean Accuracy 77.36% 77.12% 70.78% 72.17% 74.09% 70.17%
Patch Success Rate 16.86% 11.99% 17.95% 18.63% 18.29% 19.25%
Adversarial Accuracy 66.98% 70.78% 61.41% 61.65% 63.61% 59.77%

Patch Detection Rate 89.51% 89.51% 89.51% 89.51% 89.51% 89.51%
Robust Accuracy 71.53% 72.27% 67.33% 67.73% 70.30% 64.82%
Recovery Rate 53.10% 38.21% 58.51% 59.31% 64.68% 60.39%
Lost Predictions 3.39% 2.23% 2.54% 2.54% 2.77% 4.63%

Patch: [3], trained on Imagenet

Classifier VGG-16 VGG-19 ResNet-18 ResNet-50 ResNet-101 InceptionV3

Clean Accuracy 77.36% 77.12% 70.78% 72.17% 74.09% 70.17%
Patch Success Rate 10.34% 9.03% 13.10% 13.63% 15.32% 23.08%
Adversarial Accuracy 71.79% 72.80% 65.21% 65.43% 65.67% 56.89%

Patch Detection Rate 91.33% 91.33% 91.33% 91.33% 91.33% 91.33%
Robust Accuracy 72.37% 72.94% 66.96% 67.43% 70.23% 64.36%
Recovery Rate 28.79% 24.06% 43.79% 44.76% 60.68% 58.23%
Lost Predictions 2.68% 2.62% 2.99% 2.79% 3.51% 3.82%

Patch: [1], trained on Pascal VOC 07

Classifier VGG-16 VGG-19 ResNet-18 ResNet-50 ResNet-101 InceptionV3

Clean Accuracy 77.36% 77.12% 70.78% 72.17% 74.09% 70.17%
Patch Success Rate 22.81% 20.84% 35.35% 63.88% 26.55% 22.42%
Adversarial Accuracy 62.32% 63.67% 48.30% 26.94% 56.91% 57.65%

Patch Detection Rate 92.62% 92.62% 92.62% 92.62% 92.62% 92.62%
Robust Accuracy 72.29% 72.15% 67.14% 66.40% 69.97% 65.53%
Recovery Rate 65.90% 60.68% 76.43% 82.74% 70.64% 62.77%
Lost Predictions 2.94% 2.38% 2.25% 1.32% 2.41% 3.71%



Table 5. Evaluation results for the experiments performed on CASIA

Patch: [7], trained on Wildtrack

Detector YoloV2 YoloV3 YoloV4

Clean Average Precision 91,47% 92.47% 87.85%
Patch Success Rate 26.10% 60.55% 18.18%
Adversarial Average Precision 39.60% 20.31% 58.46%

Patch Detection Rate 95.31% 95.31% 95.31%
Robust Average Precision 88.21% 76.17% 85.10%
Recovery Rate 94.38% 79.98% 89.47%
Lost Predictions 0.07% 4.36% 0.26%

Patch: [2], trained on CASIA

Detector YoloV2 YoloV3 YoloV4

Clean Average Precision 91,47% 92.47% 87.85%
Patch Success Rate 7.09% 63.61% 19.72%
Adversarial Average Precision 76.56% 23.53% 60.61%

Patch Detection Rate 95.59% 95.59% 95.59%
Robust Average Precision 85.22% 72.68% 83.45%
Recovery Rate 82.83% 76.95% 83.70%
Lost Predictions 0.48% 5.03% 0.50%

Table 6. Evaluation results for the experiments performed on INRIA

Patch: [7], trained on Wildtrack

Detector YoloV2 YoloV3 YoloV4

Clean Average Precision 51.11% 81.51% 85.77%
Patch Success Rate 61.15% 33.88% 37.02%
Adversarial Average Precision 12.17% 41.80% 38.44%

Patch Detection Rate 38.80% 38.80% 38.80%
Robust Average Precision 28.03% 53.07% 50.71%
Recovery Rate 41.88% 43.61% 32.57%
Lost Predictions 1.14% 3.39% 2.03%

Patch: [2], trained on INRIA

Detector YoloV2 YoloV3 YoloV4

Clean Average Precision 51.11% 81.51% 85.77%
Patch Success Rate 34.22% 29.40% 28.94%
Adversarial Average Precision 33.04% 52.22% 48.71%

Patch Detection Rate 56.56% 56.56% 56.56%
Robust Average Precision 47.04% 65.11% 65.49%
Recovery Rate 68.39% 51.27% 53.92%
Lost Predictions 2.35% 2.33% 2.40%



6. Sample images of the Jedi defense
The final section of the supplementary materials show-

cases some samples from our various experiments:

• ImageNet samples are shown in figure 4

• Pascal VOC 07 samples are shown in figure 5

• CASIA samples are shown in figure 6

• INRIA samples are shown in figure 7

• A traffic sign dataset sample is shown in figure 8

7. Additional Certified Defense evaluations
In addition to the certified defenses evaluated in the

main paper (Derandomized Smoothing [4], Patchguard [8],
Smoothed-Vit [6]), we also evaluate another certified de-
fense: ViP [5]. The additional certified defense is also eval-
uated on ImageNet using [1]. Table 7 shows the robust ac-
curacy of all the evaluated certified defenses.

Table 7. Robust accuracy of evaluated certified defenses in com-
parison to Jedi

Defense Robust Accuracy
Jedi 64.34%
[4] 35.02%
[8] 30.96%
[6] 40.38%
[5] 58.29%



Predicted: Toaster (60.35%)

No Defense

Predicted: Capuchin (84.61%)

Jedi

Predicted: Toaster (65.39%)

No Defense

Predicted: Mousetrap (99.91%)

Jedi

Figure 4. Sample images of Jedi on the Imagenet dataset

Predicted: Bus (99.03%)

No Defense

Predicted: Aeroplane (98.68%)

Jedi

Predicted: Bus (88.07%)

No Defense

Predicted: Cow (99.99%)

Jedi

Figure 5. Sample images of Jedi on the Pascal VOC 07 dataset

No detections

No Defense

Detected: Person (82%)

Jedi

No detections

No Defense

Detected: Person (91%)

Jedi

Figure 6. Sample images of Jedi on the CASIA dataset

1/4 persons detected

No Defense

3/4 persons detected

Jedi

0/3 persons detected

No Defense

2/3 persons detected

Jedi

Figure 7. Sample images of Jedi on the INRIA dataset



Predicted: No Left Turn

No Defense

Predicted: Speed Limit 70

Jedi

Predicted: No Left Turn

No Defense

Predicted: No cars

Jedi

Figure 8. Sample images of Jedi on a traffic sign dataset
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