
Appendix

A. Implementation details
A.1. Pre-trained Generative Models

Full-body pose prior. For our full-body generative model
P , we use the GitHub implementation of VPoser [33].
VPoser is a variational autoencoder [73] trained on data ob-
tained by applying MoSh [13] on three publicly available
human motion capture datasets: CMU [6], training set of
Human3.6M [74], and the PosePrior dataset [15].

Hand object grasping model. For the right-hand grasp-
ing model G, we use the GitHub implementation of Grab-
Net [19]. GrabNet consists of two networks: 1) CoarseNet
for coarse grasps and 2) RefineNet for refining the coarse
grasps. CoarseNet takes as input a latent vector w, and the
object O, represented by its BPS representation [75], and
generates a hand pose, including its translation and rota-
tion, to be used as input to MANO. RefineNet takes as input
the CoarseNet grasp and the distances D from the coarse
MANO vertices to the object mesh. It then refines the grasp
through 3 iterations as in [76] to give the final grasp. Re-
fineNet has been trained by sampling CoarseNet grasps as
ground truth and perturbing the hand pose parameters to
simulate noisy input estimates.

Object representation. The object to-be-grasped O is rep-
resented in GrabNet using the Basis Point Set (BPS) [75]
representation which is capable of encoding arbitrary 3D
object shapes. Given any object vertices, an approaching
angle ↵ and Nb fixed basis points, the BPS representation
involves rotating the object by the angle ↵, placing it in the
center of the points and calculating the minimum distance
from each point to the nearest surface of the object. The
outputs of our model are rotated by the inverse of the rota-
tion matrix given by ↵. We use the implementation from
the bps torch library on GitHub.

A.2. Training Details

• For every example (scene and object), we optimize N =
500 latent vectors z, with different initializations, and at
the end of the optimization process we select the ones that
result in the smallest loss. During training, we periodi-
cally discard the 50% of the latent vectors that produce
the largest losses. At the end of the optimization pro-
cess, we end up with the best 16 samples out of the 500.
The parameters of the mapping network (consisting of a
2-layer MLP) are shared across the N latent vectors.

• We constrain the value of w by normalizing it such that
its norm is always one, following the density of a high-
dimensional Gaussian prior, thus making sure w is within

the distribution of the latent space of G.
• We train with Adam optimizer with a learning rate of
1e� 3 for z, and 1e� 4 for the mapping network. Addi-
tionally, we found that the translation parameters have a
much stronger gradient than the rest, especially the latent
v, so we divide the gradient that goes through txyb by 3,
and multiply the gradient that flows through v by 10. We
train for 500 iterations.

• Empirically, we found that the pre-trained GrabNet model
was much more sensitive to approaching angle ↵ then it
was to the latent w, hence we set w to the zero vector in
our experiments.

• For the hand matching loss, we weigh the vertices around
the wrist more (⇥3) than the rest, as the alignment around
the wrist is less noisy than in the fingers.

• The values for the loss weights � in the total loss are set
to: �hm = 20, �o = 1000, �g = 0.01. These do not
necessarily reflect the importance given to each loss, as
the loss values are in completely different scales.

• We additionally found that scaling the output of the MLP
differently for every parameter was helpful. Specifically,
we scale v by 5 (giving more flexibility to the human pose
generator), the translation parameters by 10, and the angle
and orientation by 20.

• We found that some obstacles have very thin walls, so we
make the obstacle mesh Mobstacle thicker by 5mm, which
allows us to model the intersections better.

B. ReplicaGrasp Dataset

Receptacles. We use a total of 48 receptacles from the
ReplicaCAD dataset [34]. Some of the static rigid object re-
ceptacles include: apartment chair, sofa, table top, TV stand
and wall cabinet. The receptacles from articulated objects
include: refrigerator top, middle and bottom; top, middle
and bottom drawers of kitchen counter on both right and
left sides, and kitchen sink; as well as top, middle and bot-
tom compartments of both sides of the kitchen cupboard.
Many of the receptacles are visible in Fig. 1.

Objects. We obtain 50 everyday object meshes from the
GRAB dataset and use the Habitat Simulator [35] to get the
final locations of the objects on the receptacles. We use the
GitHub v0.2.2 release. The simulator runs dynamics for 5
seconds to check for stability of newly placed objects.

C. Quantitative Analysis
We conduct a detailed analysis of the results in Table 1.

Performance as a function of object height. We demon-
strate the need of having a benchmark like ReplicaGrasp

https://github.com/nghorbani/human_body_prior
https://github.com/otaheri/GrabNet
https://github.com/otaheri/bps_torch
https://github.com/facebookresearch/habitat-sim


Figure 11. Object contact percentage varying by
height. FLEX performs more consistently than both base-
lines and is best on average.

Figure 12. Ground distance varying by height. SAGA performs
worst at lower heights while GOAL performs worst when the ob-
jects are high up.

Figure 13. Diversity varying by height. GOAL and SAGA
both consistently fail at generating diverse outputs at all heights.
FLEX can generate most diverse grasps at medium heights.

that allows evaluating grasps at different heights. In GRAB,
the object heights varies from a minimum of 0.75 meters to
a maximum of 1.38 meters, with a mean of 1 meter. In
ReplicaGrasp, our object heights have a much larger range

Figure 14. Sensitivity to threshold �. Trends stay the same for
all metrics across different thresholds.

from a minimum of 0.12 meters to a maximum of 2.2 me-
ters, with a mean of 1 meter. We show how performance
along different metrics changes by varying the heights of
the objects.

• Object contact percentage - Fig. 11 shows that GOAL
performs well when objects are at heights that have been
seen during training, but sees drops in performance at
other heights. SAGA is more consistent than GOAL even
at varying heights. FLEX outperforms both baselines on
average across all heights without showing much varia-
tion across height changes.

• Ground distance - Fig. 12 shows that when the object is
at a low height, SAGA fails by generating humans with
legs buried below the ground. SAGA is better at higher
heights, although qualitatively the humans appear elon-
gated. GOAL generates humans that try to fly up to grasp
objects at larger heights. GOAL performs better at lower
heights, although qualitatively the humans look unnatural
with awkwardly bent legs.

• Sample diversity - In Fig. 13, we show the average pair-
wise diversity across pairs of samples generated for an in-
stance, averaged across all instances of the dataset. This
quantifies the method’s ability to generate a range of com-
plex human poses. FLEX outperforms both baselines by
a large margin despite having additional constraints of
avoiding obstacles.

Sensitivity of the metrics to the threshold. In order to
compute the metrics, we set a threshold � that determines
the boundary between contact and penetration with an ob-
ject or an obstacle. In Fig. 14 we report results of our met-
rics for different values of this threshold, and show that the
metrics are not sensitive to its value, and that the trends
shown in the main paper (where we use � = 1e� 6) hold.
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Figure 15. Examples shown to Amazon Mechanical Turk subjects. We provide these three examples to the subjects, which range from
very bad (strongly disagree with the statement) to very good (strongly agree) results.

Figure 16. Human studies. Example of a HIT shown to subjects
on Amazon Mechanical Turk.

D. Evaluation Metrics
We provide equations for each of the metrics described

in Section 5.3.

Object contact percentage.

M contact
obj =

100

|Vo|

|Vo|X

i=1

1
�
|dvm(Voi ,Mhuman)|  �

�
, (5)

where Vo are the vertices of the object, Mhuman is the human
mesh, dvm is the signed vertex-to-mesh distance, � is a small

threshold and 1 is the indicator function.

Object penetration percentage.

M penet
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Obstacle penetration percentage.

M penet
obst =
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�
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where Vb are the vertices of the human body and Mobstacle
is the obstacle mesh. In contrast to Eq. (6), here we average
over the human body (not the obstacle) vertices, because
we care about how much of the human is penetrating an
obstacle, not how much of the obstacle is being penetrated
by the human.

Ground distance.

Mground =
��min(Vz

b )
��, (8)

where V
z
b is the z component of all vertices in Vb.

Sample diversity.

MDivsamp =
2

Ns · (Ns � 1)

X

i,j2Ns
i 6= j

dvv(V
(i)
b ,V(j)

b ), (9)

where Ns is the number of samples for a single example
and dvv is the L2 vertex-to-vertex distance in the 3D space.
V
(i)
b represents the human body vertices corresponding to

the i-th sample.



a) Strongly agree b) Agree c) Slightly disagree

Figure 17. Examples of human ratings. The figure shows three samples and their corresponding human ratings. See Appendix E for
comments from subjects.

Overall diversity.

MDivall =
2

Nd · (Nd � 1)

X

i,j2Nd
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(i)
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b ), (10)

where Nd is the total number of instances in the dataset.

E. Human Studies
We conducted perceptual evaluation studies on Amazon

Mechanical Turk (AMT) with a prompt as shown in Fig. 16.
The specific instructions were as follows:

We want to evaluate the realism of the
humans. Some questions to ask yourself
while solving the task:

1) Would you expect to see a human like
this in real-life?

2) Is the hand grasp going to result in a
natural grasp?

3) Is the human stable on the ground?

The scene can be navigated by:
1) Clicking and dragging the mouse, to

rotate the scene.
2) Zooming in and out with the scroll

wheel.
3) Clicking at a point in the scene, to

position that point in the center of
the scene.

See examples for a better intuition.

Further, we showed subjects three examples of how to suc-
cessfully perform the task by showing an example that de-
serves the ratings of 1, 2 and 6 respectively with explana-
tions for the reasoning as shown in Figure 15. We randomly
selected 96 examples of ReplicaGrasp covering objects in
all 48 receptacles in both upright and fallen orientations. We
showed each example to 5 different subjects and we had 30

Sample-wise " Overall "

Method Full Body Right-hand Full Body Right-hand

GOAL 0.11 0.04 6.01 12.14
SAGA 1.14 0.09 15.29 13.79
FLEX (ours) 26.91 0.36 39.98 16.40

Table 3. Diversity analysis on GRAB (cm)

unique subjects solve the task. We filtered out cases which
saw high inter-subject disagreement.

Fig. 17 shows some examples of FLEX generations eval-
uated by subjects. Participants generally found the results
realistic – for example, for Fig. 17 b, a participant wrote:
“The stretch of the hand inside the drawer is very realis-
tic”. In some cases where the subjects gave a low rating,
for instance in Fig. 17 c, we received interesting comments:
“Doesn’t need to squat to grab item”. This reveals a short-
coming of our system wherein we do not measure the effort
required to grasp an object. Explicitly modeling physical
effort and its effect on the choice of the human’s pose is an
interesting direction that we leave as future work.

F. Computational Budget
We performed speed and memory comparisons (aver-

aged across 10 runs) for generating 16 different samples
on a single RTX 2080 Ti GPU. FLEX involves using pre-
trained models simultaneously, the memory consumption is
3x (4.8 GB vs 1.4 GB). FLEX takes around 8.5 minutes to
generate 16 samples, while SAGA and GOAL take 6 and 1
minute respectively. We sacrifice computational budget for
significantly better results.

G. Diversity Analysis
Tab. 3 shows diversity metric computed for hand (no-

full-body) and for full-body (no-hand) for all 3 meth-
ods. FLEX has higher diversity in both, but the gains are
significant for full-body.



Method Obj Cont
(%) "

Obj Penet
(%) #

Obs Penet
(%) #

Ground
(cm) #

Random Init 0.15 35.06 2.02 60.32
CMA-ES 0.03 17.39 2.03 58.25
FLEX 2.20 2.50 0.53 0.00

Table 4. Comparison with Optimization methods.

Figure 18. Object contact, penetration and Obstacle penetration
metrics varying by iterations.

H. Choice of Optimization Framework
FLEX is agnostic to the choice of the optimization

method. We used the recent Liu et al. [72] which smooths
the loss landscape for better convergence. To validate this
choice of a gradient-based optimization framework, we
conduct experiments with non-gradient based methods de-
scribed below:
• Ranking: Instead of optimization, we simply rank a large

the batch of whole-body grasps produced by randomly
sampling the optimization parameters.

• CMA-ES: Covariance matrix adaptation evolution strat-
egy implemented from PyPI.

Results are shown in Tab. 4. As expected, FLEX is superior
to both the baselines.

I. Performance as a function of the number of
optimization steps

Fig. 18 shows average optimization metrics over differ-
ent iterations. Object and obstacle penetration go down with
training. Object contact stays largely unchanged.

https://pypi.org/project/cmaes/
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