
Supplementary Material for Learning to Zoom and Unzoom

Chittesh Thavamani1 Mengtian Li†1 Francesco Ferroni‡2 Deva Ramanan1

1Carnegie Mellon University 2Argo AI
tchittesh@gmail.org mtli@cs.cmu.edu fferroni@nvidia.com deva@cs.cmu.edu

A. Appendix

A.1. Bilinear Transformations

Figure 1. Geometric interpretation of bilinear transformations. Sup-
pose we have such a transformation from the unit square to an
arbitrary quadrilateral. Given coordinates (u, v) in the unit square,
if we draw lines in the quadrilateral such that u = |xbxbl|

|xbrxbl|
=

|xtxtl|
|xtrxtl|

and v = |xlxbl|
|xtlxbl|

= |xrxbr|
|xtrxbr|

, they will intersect at
BilinearTransformation(u, v).

Our construction in Section 4.1 assumes prior knowledge
of bilinear transformations. Bilinear transformations have
actually been widely studied in the context of computer
graphics [10]. Here, for unfamiliar readers, we outline its
definition and inverse formulation.

For simplicity, consider a bilinear transformation that
maps the unit square to the quadrilateral with corners
xbl,xbr,xtl,xtr. True to its name, the transformation is
defined within the square via bilinear interpolation:

BilinearTransformation(u, v) = xbl + (xbr − xbl)u

+(xtl − xbl)v + (xtr−xbr − xtl + xbl)uv. (1)

Interestingly, this transformation also has a geometric inter-
pretation, shown in Figure 1.

Now, consider the inverse of this mapping. Given a point
(x, y) in the quadrilateral, we want to find the point (u, v)
in the unit square that maps to it. A full derivation is given

†Now at Waymo.
‡Now at Nvidia.

in [10], but if we define the following scalars

(a0, b0) = xbl (2)
(a1, b1) = xbr − xbl (3)
(a2, b2) = xtl − xbl (4)
(a3, b3) = xtr − xbr − xtl + xbl (5)

c0 = a1(b0 − y) + b1(x− a0) (6)
c1 = a3(b0 − y) + b3(x− a0) + a2b1 − a2b1 (7)
c2 = a3b2 − a2b3, (8)

then the solution (u, v) must satisfy

c2v
2 + c1v + c0 = 0 (9)

and
u =

x− a0 − a2v

a1 + a3v
. (10)

Applying the quadratic formula on Equation 9, we can
solve for v. Then, we can substitute into Equation 10 to find
u. Given a point (x, y) in the quadrilateral, this will produce
exactly one pair of solutions (u, v) in the unit square (there
may be extraneous solutions with u or v negative or greater
than 1).

Although these results assume a mapping from the unit
square, they extend naturally to our use case. Recall from
Section 4.1 that T̃ij is a bilinear transformation from rectan-
gle Rij to quadrilateral T [Rij]. We can apply all previous
results, simply by normalizing the coordinates within Rij .

A.2. Efficient Inversion of Nonseparable Warps

In Section 4.2, we detail how to efficiently invert separa-
ble zooms TLZ,sep. To invert nonseparable zooms TLZ, it no
longer suffices to invert each axis. We must instead reason
in the full 2D space.

Suppose we have a nonseparable zoom TLZ. We compute
TLZ[Grid(h,w)] for small h,w and use this to approximate
the forward zoom as T̃LZ, an (h−1)×(w−1) piecewise tiling
of bilinear maps. Now, to unzoom to a desired output reso-
lution of H ′′ ×W ′′, we must evaluate T̃LZ[Grid(H ′′,W ′′)].
That is, for each x ∈ Grid(H ′′,W ′′), we must determine
which of the (h− 1)(w − 1) quadrilateral pieces it falls in

1

Figure 2. Unzooming in the nonseparable case. TLZ is approximated as T̃LZ, which is a (h− 1)× (w− 1) tiling of bilinear transformations
(left). We wish to compute T̃ −1

LZ (x) at each green point x ∈ Grid(H ′′,W ′′), where H ′′ ×W ′′ is the desired output size (middle). For
the ij-th tile, we consider the set of all candidate green point x within the enclosing blue box (right) and apply the corresponding inverse
bilinear transformation. We set T̃ −1

LZ (x) = BilinearTransformation−1
ij (x) only if it falls in the ij-th grid rectangle R(i, j).

Algorithm 1 Inverting nonseparable zooms TLZ.
In practice, we make the following optimizations. We vectorize the loop on
line 13. We also fix Bij to be the max size over choices of (i, j), allowing
us to implement the loop on line 4 using batch-processing.

1: ▷ See Appendix A.2 for the algorithm setup and meaning of variables.

2: function UNZOOM(TLZ[Grid(h,w)], (H′′,W ′′))

3: Initialize T −1
LZ (x) = (0, 0) for all x ∈ Grid(H′′,W ′′)

4: for (i, j) ∈ [h− 1]× [w − 1] do
5: ▷ corners of R(i, j)

6: x′
tl,x

′
tr =

(
i

h−1
, j−1
w−1

)
,
(

i
h−1

, j
w−1

)
7: x′

bl,x
′
br =

(
i

h−1
, j−1
w−1

)
,
(

i
h−1

, j
w−1

)
8: ▷ corners of ij-th quadrilateral tile

9: xtl,xtr = T −1
LZ

(
x′
tl

)
, T −1

LZ (x′
tr)

10: xbl,xbr = T −1
LZ

(
x′
bl

)
, T −1

LZ

(
x′
br

)
11: ▷ top-left and bottom-right corners of rectangle

12: ▷ enclosing the quadrilateral tile

13: ctl = min(xtl,xtr,xbl,xbr)

14: cbr = max(xtl,xtr,xbl,xbr)

15: ▷ set of all candidate points in the ij-th tile

16: Bij = {x ∈ Grid(H′′,W ′′) : ctl ≤ x ≤ cbr}
17: for x ∈ Bij do
18: x′ = BilinearTransformation−1

ij (x)

19: if x′
tl ≤ x′ ≤ x′

br then
20: T −1

LZ (x) = x′

21: return T −1
LZ

and apply the corresponding inverse bilinear map. Recall
from Appendix A.1 that applying an inverse bilinear map
amounts to solving a quadratic.

In our actual implementation, we parallelize operations
as much as possible. For the ij-th tile, instead of first de-
termining which points x ∈ Grid(H ′′,W ′′) are inside of it
and then applying the ij-th inverse bilinear map, we imple-

ment it the other way around. We consider a set of candidate
interior points, apply the ij-th inverse bilinear map to all
of them, and keep only those with a valid solution. The
candidate points are those falling inside the axis-aligned rect-
angle enclosing that tile. The full procedure is described in
Algorithm 1 and visualized in Figure 2.

Our implementation takes about 12.6ms to invert a non-
separable warp with (h,w) = (31, 51) and an output shape
(H ′′,W ′′) = (600, 960), as in our Argoverse-HD [6] exper-
iments. While this is not fast enough to support favorable
accuracy-latency tradeoffs, we believe that further optimiza-
tion (e.g. using custom CUDA operations) may change this.

A.3. Analysis of our Warping Approximations

We make two approximations in our formulation. First, to
ensure that the composition of forward and inverse warps is
truly the identity function, we use the approximate forward
warp T̃ in place of the true forward warp T . This trades
latency for how well T̃ zooms in on the intended regions of
interest. See Figure 3 for a visualization of this effect.

Second, we use bilinear downsampling to approximate
the inverse at lower resolutions after feature pyramid net-
works [8]. This approximation is surprisingly effective! For
our fixed LZU model on 2D detection, we calculate that the
error between T̃ −1 and the doubly approximated inverse
T̂ −1
d given by

avg
x∈Grid(H′/d,W ′/d)

∥∥∥T̃ −1(x)− T̂ −1
d (x)

∥∥∥
2

(11)

is only 0.0274, 0.0065, 0.0028 pixels at d = 2, 4, and 8!

A.4. Sensitivity to Saliency

Fixed LZU is quite robust to choice of saliency. Details
on how we computed our saliency maps are given in Ap-
pendix A.6. For 2D detection, we performed a grid search at
0.5x scale to determine the saliency hyperparameters. The

Figure 3. Quality of the approximate forward warp T̃ as we decrease the dimensions h× w of our piecewise bilinear approximation. T̃
degrades noticeably once h,w decrease beyond a certain threshold.

LZU, fixed

Attraction Kernel fwhm

Amp. 4 10 16 22

1 34.6 34.8 35.4 35.7
5 34.5 34.7 32.6 34.6

10 34.8 34.4 32.3 34.5
50 35.0 33.5 31.4 33.7

100 35.0 33.8 31.3 33.2

LZU, adaptive

Attraction Kernel fwhm

Amp. 4 10 16 22

1 34.9 36 35.6 35.5
5 34.3 35.1 33.3 35.1

10 33.4 34.3 32.2 34.0
50 33.8 33.2 32.3 34.2

100 34.0 33.6 32.3 33.7

Table 1. Grid search over hyperparameters for 2D object detection
(see Appendix A.6) shows that LZU is quite robust to choice of
saliency. For comparison, uniform downsampling yields an AP of
32.2.

results show that LZU is quite robust to choice of saliency, as
long as the warp is not too strong (see Table 1). For semantic
segmentation and 3D detection, we chose saliency one-shot,
which suggests that these fixed LZU models are also robust
to choice of saliency.

Our grid search suggests that adaptive LZU is also ro-
bust to choice of hyperparameters than fixed LZU. However,
these saliency hyperparameters, chosen at 0.5x scale, strug-
gle to generalize to 0.75x and 1x scale (see Table 1). As
a result, for adaptive warps, it may be necessary to tune
saliency at each scale.

A.5. Additional Results

In Figure 4, we plot the spatial accuracy of our
CityScapes [5] models.

A.6. Implementation Details

Our experiments are implemented using open-source
libraries MMDetection [2], MMSegmentation [4], and
MMDetection3D [3], all released under the Apache 2.0 Li-
cense. We use GeForce RTX 2080 Ti’s for training and
training, which takes at most 5 GPU-days for any given
model, but the precise amount varies by model and task. We
perform all timing experiments with a batch size of 1 on a
single GPU.

Figure 4. Visualizations of the per-pixel accuracy difference be-
tween the uniform and the LZU models at each resolution. The
largest gains occur at the central horizontal strip, largely corre-
sponding with the saliency map used for segmentation. However,
performance also decreases at the top and bottom of the image.
Thus, using a fixed saliency map must be conscious decision to
trade performance at low saliency regions for high saliency regions.
We hypothesize that adaptive saliency maps could lead to more
uniform gains.

Argoverse-HD [6] Detection As done in FOVEA [9],
for our uniform downsampling experiments, we finetune
a COCO-pretrained model for 3 epochs with the random left-
right image flip augmentation, a batch size of 8, momentum
SGD with a learning rate of 0.005, momentum of 0.9, weight
decay of 1e-4, learning rate warmup for 1000 iterations, and
a per-iteration linear learning rate decay [7].

For both LZU models, we use a learning rate of 0.01 and
keep all other hyperparameters identical to the baseline. To
"zoom", we use a 31 × 51 saliency map and the separable
anti-cropping formulation TLZ,sep,ac (as proposed in [9] and
discussed in Section 3.2).

For the fixed saliency LZU model, we use Gaussian dis-
tance kernels kx and ky of full-width-half-maximum (fwhm)
22. To generate the fixed saliency map, we use kernel den-
sity estimation (KDE) on all training bounding boxes with
hyperparameters amplitude a = 1 and bandwidth b = 64.
For details on the effects of a and b, refer to [9].

For the adaptive saliency LZU model, we use Gaussian
distance kernels kx and ky of fwhm 10. To generate adaptive
saliency, we use KDE on detections from the previous frame
with a = 1 and b = 64. When training, to simulate motion,

we jitter bounding boxes by N (0, 7.5) pixels horizontally
and N (0, 3) pixels vertically.

For each LZU experiment, we run a grid search at
0.5x scale over separable/nonseparable, amplitude a =
1, 5, 10, 50, 100, and distance kernel’s fwhm = 4, 10, 16, 22
to determine optimal settings. This is done using an 80/20
split of the train set, so as to not overfit on the real validation
set. We generate this split such that locations between splits
are disjoint. All other hyperparameters are chosen one-shot.

Cityscapes [5] Segmentation We train the uniform down-
sampling baseline using mostly the default hyperparameters
from MMSegmentation [4]. The only changes are to the data
augmentation pipeline and the evaluation frequency. Com-
prehensively, we train with just the photometric distortion
augmentation (random adjustments in brightness, contrast,
saturation, and hue), a batch size of 16, momentum SGD
with a learning rate of 0.01, momentum of 0.9, weight decay
of 5e-4, and a polynomial learning rate schedule with power
0.9. To account for overfitting, we validate our performance
at 10 equally spaced intervals on a 500-image subset of the
training dataset (and train on the others). For all experiments,
we train for 80K iterations, with the exception of 64 × 64,
which we train for 20K iterations due to rapid overfitting.

For the fixed LZU model, we use the same training hyper-
parameters as the baseline. To "zoom", we use the separable
anti-cropping formulation TLZ,sep,ac with a 45× 45 saliency
map and Gaussian distance kernels kx, ky of fwhm 15. To
generate the fixed saliency, we aggregate ground truth se-
mantic boundaries over the train set. Precisely, we define
boundaries to be pixels which differ from at least one of its
eight neighbors. We compute semantic boundaries for each
256 × 256 ground truth segmentation, assign boundaries
an intensity of 200 and background an intensity of 1, and
average pool down to a 45× 45 saliency map. The seman-
tic boundary intensity value was chosen qualitatively (for
producing a reasonably strong warp) and tested one-shot.

nuScenes [1] 3D Detection We train the uniform down-
sampling baseline using all default hyperparameters from
MMDetection3D [3], except the learning rate, which we
reduce for stability. Specifically, we train for 12 epochs with
the random left-right flip augmentation, a batch size of 16,
momentum SGD with a learning rate of 0.001, momentum
of 0.9, weight decay of 1e-4, doubled learning rate on bias
parameters with no weight decay, L2 gradient clipping, a
step learning rate schedule with drops at epochs 8 and 11,
and a linear learning rate warmup for the first 500 iterations.

For the fixed LZU model, we use the same training hyper-
parameters as the baseline. To "zoom", we use the separable
anti-cropping formulation TLZ,sep,ac with a 27× 48 saliency
map and Gaussian distance kernels kx, ky of fwhm 10. To
generate the fixed saliency, we project 3D bounding boxes

into the image plane and reuse the same KDE formulation
with the same hyperparameters (a = 1 and b = 64) as used
in 2D detection. These are all chosen and evaluated one-shot.

References
[1] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 4

[2] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue
Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 3

[3] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 3, 4

[4] MMSegmentation Contributors. MMSegmenta-
tion: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-
mmlab/mmsegmentation, 2020. 3, 4

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 3213–3223, 2016. 3, 4

[6] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. Towards
streaming perception. In European Conference on Computer
Vision, pages 473–488. Springer, 2020. 2, 3

[7] Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted
training: Rethinking deep neural network training under re-
source constraints. arXiv preprint arXiv:1905.04753, 2019.
3

[8] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2117–2125, 2017. 2

[9] Chittesh Thavamani, Mengtian Li, Nicolas Cebron, and Deva
Ramanan. Fovea: Foveated image magnification for au-
tonomous navigation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 15539–
15548, 2021. 3

[10] George Wolberg. Digital image warping, volume 10662.
IEEE computer society press Los Alamitos, CA, 1990. 1

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

	. Appendix
	. Bilinear Transformations
	. Efficient Inversion of Nonseparable Warps
	. Analysis of our Warping Approximations
	. Sensitivity to Saliency
	. Additional Results
	. Implementation Details

