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1. More Details on Experiments

We provide more details on experiments. For pixel-
supervised models, the pre-training and fine-tuning details
are provided in Tables 7 and 8, respectively. For CLIP-
supervised models, the pre-training and fine-tuning details
are provided in Tables 9 and 10, respectively. During pre-
training using CLIP, we add an early-stage supervision at
3/4 of the third stage following BEiT-v2 [7].

Table 7. Hyperparameters for pre-training using image pixels as
supervision on ImagetNet-1K.

Hyperparameters base-scale large-scale

Patch size 16
Hidden size 512 768
Layers 3-3-24 2-2-40
FFN hidden size 2048 3072
Attention heads 8 12
Attention head size 64

Input resolution 224×224
Training epochs 400/1600
Optimizer AdamW
Base learning rate 1.5e-4
Weight decay 0.05
Optimizer momentum β1,β2 = 0.9,0.95
Batch size 4096
Learning rate schedule cosine decay
Warmup epochs 40
Augmentation RandomResizeCrop
Absolute positional embedding ✓
Relative positional embedding ✗

Table 8. Hyperparameters for fine-tuning using image pixels as
supervision on ImagetNet-1K.

Hyperparameters base-scale large-scale

Input resolution 224×224
Training epochs 100 50
Optimizer AdamW
Base learning rate 5e-4 1e-3
Weight decay 0.05
Layer decay {.45,.5,.55} {.5,.55,.6}
optimizer momentum β1,β2 = 0.9,0.999
Batch size 1024
Learning rate schedule cosine decay
Warmup epochs 5

Label smoothing 0.1
Stoch. path 0.2 0.2
Dropout ✗

Augmentation RandAug (9,0.5)
Mixup prob. 0.8
Cutmix prob. 1.0

Absolute positional embedding ✓
Relative positional embedding ✓

2. Handling Information Leak

When MIM-based methods are applied to pre-train
iTPN, we encounter two kinds of information leak issues,
namely, inter-layer and intra-layer information leak. Below,
we elaborate them and describe the solutions.

The inter-layer information leak is related to the masking
strategy used in this study, where the masking operation is
applied across all the feature pyramid layers, i.e., the hier-
archical backbone and feature pyramid. As shown in Fig-
ure 5, independently and randomly masked tokens on differ-
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Table 9. Hyperparameters for pre-training using CLIP models as
supervision on ImagetNet-1K.

Hyperparameters base-scale large-scale

Patch size 16 14/16
Hidden size 512 768
Layers 3-3-24 2-2-40
FFN hidden size 2048 3072
Attention heads 8 12
Attention head size 64

CLIP models CLIP-B CLIP-B/CLIP-L
Input resolution 224×224
Lay Training epochs 300/800 300
Optimizer AdamW
Base learning rate 1.5e-3
Minimal learning rate 1e-5
Weight decay 0.05
Optimizer momentum β1,β2 = 0.9,0.98
Batch size 2048
Gradient clipping 3.0
Drop path 0.1 0.2
Learning rate schedule cosine decay
Warmup epochs 10
Augmentation RandomResizeAndCrop
Color jitter 0.4
Absolute positional embedding ✓
Relative positional embedding ✓
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Figure 5. Information leak problems. Left: inter-layer informa-
tion leak due from the normal tokens to masked tokens. Right:
intra-layer information leak caused by spatial information interac-
tion (such as convolutional operation) within the feature layer.

ent feature pyramid layers may cause the misalignment of
masked tokens. Another kind of information leak is caused
by the spatial overlapping of transformer pyramid layers,
i.e., the masked tokens in a pyramid layer can be easily re-
constructed by that from adjacent layers, if those tokens are
not masked. An intuitive solution is to spatially align the to-
kens to be masked across the feature pyramid. This simple
operation achieves good performance as validated by exper-

Table 10. Hyperparameters for fine-tuning using CLIP models as
supervision on ImagetNet-1K.

Hyperparameters base-scale large-scale

Input resolution 224×224
Training epochs 100 50
Optimizer AdamW
Base learning rate 5e-4 1e-3
Minimal learning rate 1e-6
Layer decay {.45,.5,.55} {.5,.55,.6}
optimizer momentum β1,β2 = 0.9,0.999
Batch size 1024
Learning rate schedule cosine decay
Warmup epochs 5

Label smoothing 0.1
Stoch. depth 0.2 0.3
Dropout ✗
Gradient clipping ✗
Weight decay 0.05

Erasing prob. 0.25
Augmentation RandAug (9,0.5)
Mixup prob. 0.8
Cutmix prob. 1.0

Absolute positional embedding ✓
Relative positional embedding ✓

iments.
The intra-layer information leak is caused by the spa-

tial information interaction across a feature map, as convo-
lutions or window attentions involve integrating informa-
tion from masked and unmasked neighboring pixels [3].
These local operations collect information of masked to-
kens so that the MIM pre-training target degenerates. To
solve intra-layer information, we propose to use channel-
wise MLP (C-MLP) to replace all convolution and window
attention operations. As C-MLP is only used to connect
tokens across transformer layers and does not use any intra-
layer connections, it does not involve spatial information
interactions. All the required spatial information interac-
tions are performed by the multi-head self-attention opera-
tions in deep transformer layers. This simple-yet-effective
design not only solves intra-layer information leak, but also
outperforms the window attention operations [6].

3. Generalizing to Plain Vision Transformers
In this part, we show that the proposed method also could

be used on plain vision transformer (specifically ViT-B [2]).
We up-sample the 4-th and 7-th layers from the backbone to
4× and 2× size features so that the hierarchical features are
obtained to build the pyramid network. Other than that, all
the rest modules of the architectures and settings are the



Table 11. Generalizing integral pre-training (iPT) to plain ViTs.
All the results are reported with the same configurations by de-
fault. The numbers are in % for classification accuracy, box AP,
and mIoU. The models are pre-trained for 400 epochs. For COCO,
1× Mask R-CNN is used and box AP is reported.

Method epochs ImageNet-1K COCO ADE20K

MAE 400 83.1 46.4 46.2
MAE 1600 83.6 48.4 48.1
iTPN 400 83.7 49.3 49.0

Table 12. Inference throughput (imgs/s) comparison with image
size of 224 × 224. We test all the results using the same settings
and the GPU is a V100-32G machine. The models we used report
comparable throughput compared to vanilla ViT models.

Models Base Large

ViT 278.3 91.4
HiViT 264.1 86.0

Table 13. A model complexity comparison between FPN [5] and
iTPN on object detection using Mask-RCNN [4] framework. We
show that iTPN uses comparable model complexity (Params and
FLOPs) and enjoys better results (1× training schedule here). We
use the analysis tool provided by MMdetection [1] library to test
the Params and FLOPs by using input size of 640× 640.

Method Pyramid Params (M) FLOPs (G) AP

MAE-B FPN [5] 115 389 48.4
iTPN-B pyramid network 103 397 53.0

MAE-L FPN [5] 338 756 54.0
iTPN-L pyramid network 313 740 55.6

same to iTPN. We summarize the results on Table 11. As
shown, iTPN-ViT 400e model surpasses both MAE 1600e
and 400e models by a large margin, which verifies the ef-
fectiveness of integrally pre-training method.

4. Computational Efficiency
We provide the comparison on throughputs between

vanilla ViT models and the proposed iTPNs (i.e., HiViT
models). As shown in Table 12, iTPN models report the
comparable inference speeds for both base and large-scale
models.

We then test the model complexity comparison in Ta-
ble 13. We test the model complexity using the open
analysis tool of MMdetection library [1] using the input
size of 640 × 640. One can see that iTPN-base reports
fewer model parameters (103M v.s. 115M) and comparable
FLOPs (397G v.s. 389G) than ViT-base. For large-scale
models, iTPN-large enjoys both of them: fewer model pa-

rameters (313M v.s. 338M) and lower FLOPs (740G v.s.
756G) compared to ViT-large.
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