
A. Appendix

A.1. Overcoming Training Data Limitations

Due to the possible inadequacies of representative sam-
ples in the upstream training data, practical implementation
with good performance can be challenging. Below, we dis-
cuss the three main challenges in crafting the pretrained
model in practice, and our ways of addressing them.

Imbalance between Samples with and without Target
Property. If the upstream training set contains a large num-
ber of samples with only a small fraction with the target
property, optimization of the loss function related to sam-
ples with the target property (Second line of Equation 3)
can have convergence issues. To deal with this scenario, we
use mixup-based data augmentation to increase the number
of samples with the target property in the upstream training
set [40]. Additionally, to reduce the training time (faster
convergence) for the upstream model, we also use a clean
pre-trained model as the starting point for obtaining the final
manipulated model.

Lack of Upstream Labels for Samples with Target Prop-
erty. If samples with the target property are already present
in the upstream training set, the attacker can directly train
its model using Equation 2. However, this may not always
be the case in practice and the attacker may need to inject
additional samples with the target property (that are avail-
able to the attacker), with the label information for these
injected samples being unavailable. For example, if the tar-
get property is a specific individual, when adding the im-
ages of that individual to ImageNet dataset, we may not
be able to find proper labels for injected images out of the
original 1K possible labels. However, these labels are re-
quired for optimizing lnormal. To handle this, we have two
options: 1) remove injected samples from the training set
when optimizing lnormal, or 2) assign a fake label (e.g., cre-
ate a fake n+1 label for injected samples in a n-class classi-
fication problem) and remove parameters related to the fake
label in the final classification layer before releasing mod-
els. The first option has negligible impact on the main task
accuracy in all settings, but resultant attack effectiveness is
inferior to the second one. In contrast, the second option
usually gives better inference results, but in some settings
(e.g., experiments when pretrained models are face recog-
nition models in Section 7), can have non-negligible impact
on the main task accuracy. Therefore, we choose the second
option when it does not impact the main task performance
much and switch to the first one when it does.

Lack of Representative Non-Target Samples in Training
Set. The space of samples without the target property can
be much larger than the space of samples with the target
property as the former can contain combinations of multi-
ple data distributions. For example, if the target property

is a specific individual, then any samples related to other
people or even some unrelated stranger all count as sam-
ples without the target property. However, in practice, the
upstream trainer’s data may not contain enough non-target
samples to be representative. This can be a problem when
minimizing the loss item related to the samples without the
target property (first line of Equation 3), as secreting activa-
tions may not be sufficiently suppressed for those samples.
To solve this, we choose to augment upstream training set
with some representative samples without the target prop-
erty and name this method as Distribution Augmentation.
For example, when the target property is a specific person,
the attacker can inject samples of new people not present
in the current upstream training set and thus expand the
upstream distribution. The labels for these newly injected
samples are handled similarly to the labels for additionally
injected samples with target property. An ablation study on
the importance of distribution augmentation is given in Ap-
pendix A.9.

A.2. Details of Dataset Settings

As introduced in Section 6, we experiment with three
transfer learning tasks: gender recognition, smile detec-
tion, and age prediction. We consider the property infer-
ence of determining whether images of specific individu-
als are present in the downstream training set for all these
tasks. And for the smile detection and age prediction, we
consider additional inference targets: inferring the presence
of senior people for smile detection and the presence of
Asian people for age prediction. As for the inference of
the existence of specific individuals, we choose the person
who has the most samples in VGGFace2 as the inference
target for both gender recognition and age prediction, and
choose the person who has the most samples of smile la-
bels (provided by MAADFace [31, 32]) as the target for
smile detection (the person with the most samples in VG-
GFace2 does not have enough samples with valid labels for
the smile attribute). We choose the target property in this
manner mainly for convenience in conducting experiments,
as the upstream model training, victim model training, and
shadow model training (for meta-classifier-based property
inference) (ideally) require no overlaps between their train-
ing data to mimic the hardest attack scenario. Subsequently,
if we choose a target with small number of samples in the
original dataset, then we may have trouble in performing
the three types of model training effectively.

In the upstream training, since we use the techniques
described in Appendix A.1, we need to inject samples
with and without the target property into the original up-
stream training set. And for the downstream model train-
ing, we first prepare downstream candidate sets based on
VGGFace2 and then construct various downstream settings
using the samples from the candidate sets (Appendix A.3).



Task Target Property Samples injected into Upstream training Downstream Candidate set
w/ property w/o property w/ property w/o property

Gender Recognition
Specific Individuals

342 1 710 250 200 000
Smile Detection 261 1 305 250 200 000
Age Prediction 342 1 710 250 165 915

Smile Detection Senior 3 000 15 000 1 000 200 000

Age Prediction Asian 3 000 15 000 1 000 128 528

Table 2. Number of samples injected into the upstream training and in the downstream candidate sets

Table 2 summarizes the number of samples of the sample
injection and the downstream candidate sets. The details of
the three transfer learning tasks are reported below:

Gender recognition. We randomly select 50 people from
VGGFace2 and train face recognition models classifying
those 50 people as the upstream model. For each person,
we randomly choose 400 samples for training and 100 for
testing. To avoid overlap, we also ensure that any images of
these 50 people do not appear in the downstream training.
Since the individual targeted by the adversary (the inference
target) is not in the randomly chosen upstream set, we inject
342 randomly chosen samples with the target property into
the upstream training set to achieve the attack. Note that,
we also need to assign enough disjoint samples with the tar-
get property to the downstream training and meta-classifier
training, and 342 is the maximum number of samples that
we can assign to the upstream training as there are limited
samples with the target property in VGGFace2. For the dis-
tribution augmentation described in Appendix A.1, we in-
ject 1 710 samples (5 × 342) without the target property to
the upstream set, and those injected samples are randomly
sampled from VGGFace2 and are from individuals that are
not in the original upstream training set. As for the down-
stream candidate set, there are 250 samples with the target
property and 200 000 samples without the target property.
All the samples in the candidate set are randomly sampled
from VGGFace2 and have no overlap with those in the up-
stream training.

Smile detection. We have two inference targets for this
transfer learning task. For the inference of the specific in-
dividual, the number of samples with the target property in-
jected into the upstream set is 261 (number decreased com-
pared to gender recognition since there are fewer samples
with the target property in VGGFace2 for this inference
task), and the number of samples without the target prop-
erty for distribution augmentation is 1 305 (5 × 261). The
candidate set for the downstream training has 250 samples
with the target property and 200 000 samples without the
target property.

As for the inference of the presence of senior people,
since there are plenty of samples labeled as seniors in VG-

GFace2 [31], we increase the number of samples injected
into the upstream training set and inject 3 000 samples with
the target property and 15 000 samples without the tar-
get property (distribution augmentation). The original up-
stream training set is ImageNet [9]. However, ImageNet
contains images of human beings, and there are no “senior”
labels for those images. Instead of manually labeling them,
we remove all the facial images in ImageNet for this in-
ference task. We use the facial labels provided by Yang et
al. [38] when conducting the removing. The downstream
candidate set has 1 000 samples (number increased since
there are more samples available) with the target property
and 200 000 samples without the target property.

Age prediction. We also have two inference targets for this
transfer learning task. For the inference of the presence of
the specific individual, the numbers of samples with and
without the target property injected into the upstream train-
ing set are 342 and 1 710 respectively, which are the same as
those in the gender recognition task as the target properties
are the same in these two tasks. The downstream candidate
set has 250 samples with the target property and 165 915
samples without the target property.

As for the inference of the presence of Asian people,
we inject 3 000 samples with the target property (Asian)
and 15 000 samples without the target property into the up-
stream training set. These two numbers are the same as
those in the smile detection task with senior people as the
target property. We also remove all the facial images in
ImageNet for this inference task. The downstream can-
didate set has 1 000 samples with the target property and
128 528 samples without the target property. The number
of samples without the target property in the downstream
candidate set in the age prediction task is less than those
in other settings. This is because we are not able to find
enough samples with valid ethnic labels using the attribute
labels provided by MAADFace.

A.3. Details of Downstream Training and Adver-
sary’s Meta-Classifier Training

As described in Appendix A.2, to generate the down-
stream training set, we first prepare randomly selected sam-



ples without the target property and samples with the tar-
get property to form the downstream candidate set, and
then construct downstream sets based on the candidate set.
Specifically, a downstream training set of size n is gener-
ated by randomly sampling from this candidate set while
also specifying the number of samples with target property
as nt. For experiments in this section, we consider set-
tings where n = 5 000 or 10 000, and nt takes value from
{0, 1, 2, 3, 4, 5, 10, 20, 50, 100, 150} (this gives 2 × 11 = 22
different settings). We train 32 downstream models with
different random seeds for each setting, and those models
will be used for computing inference AUC scores (the mod-
els trained with nt = 0 are used as the reference group).

To train the meta-classifier attacks, the attacker needs to
train many downstream shadow models and thus, we also
prepare a separate downstream candidate set with the same
size as the victim’s downstream candidate set but without
any overlaps on the data. This simulates the most difficult
and realistic scenario for the attacker. We also ensure that
no samples in the two downstream candidate sets appear
in the upstream training set, which again makes the attack
more difficult. To simulate the victim’s downstream train-
ing, we assume the attacker also uses a downstream train-
ing set of size n, but has no overlap with the actual victim’s
downstream training set. In Appendix A.8, we relax this as-
sumption and show our attack retains its effectiveness even
when the size of the victim’s downstream training dataset
is unknown to the adversary. For each setting with fixed
n, the attacker trains 320 shadow downstream models (256
for training, 64 for validation) for each of the distributions
(with and without target property). The number of training
samples with the target property for each model is randomly
selected from the range [1, 170], which simulates the sce-
nario where the value of nt of the victim downstream model
cannot be accurately guessed.

A.4. Baseline Results

In this section, we focus on experiments where the up-
stream model is trained normally, without considering the
attack goals described in Section 4 and Section 8.2. For
these baseline experiments, there are no secreting parame-
ters (i.e., manipulated secreting activations) in the model,
so the attacker can only use the attacks that are not directly
related to the manipulation.

We experiment with the confidence score test, the black-
box meta-classifier, and the white-box meta-classifier, and
report AUC scores for distinguishing between models
trained with and without the target property. For meta-
classifier-related inferences, we report the average AUC
values over five runs of meta-classifiers with different ran-
dom seeds, along with their standard deviation. Figure 3
shows the results. We observe that the attacks have infer-
ence AUC scores less than 0.82, with most (4 out of 6 set-

tings) of them with scores less than 0.7. Moreover, we do
not find a clear winner from the three inference methods we
test. These results demonstrate the limited effectiveness of
existing methods applicable to normally trained upstream
models.

A.5. Hyperparameter Setup of Zero-Activation At-
tacks

In Section 7, when training upstream models for the
zero-activation attack (Section 4), we set α and β to 1, treat-
ing all loss terms equally. We tried different settings on α
and β, as well as methods that automatically set them [27],
but no significant improvements are observed, so we just
use those simplest choices. We also tested different values
for λ and m, but did not observe significant differences in
the attack effectiveness, suggesting our attack is not sensi-
tive to hyperparameters. Details of experiments on differ-
ent combinations of λ and m are in Appendix A.7. For
the results in Section 7, we select λ values that are big
enough while ensuring the upstream model accuracy is not
impacted significantly (λ = 10 for smile detection and age
prediction, and λ = 5 for gender recognition). For m, for
gender recognition, we select the first 16 activations of the
total 1 280 activations. For smile detection and age predic-
tion, since the first layer of downstream model is convolu-
tional, we can only select activations at the granularity of
channels, and we choose to manipulate the first channel of
the total 256 channels. We also use the distribution augmen-
tation described in Appendix A.1 in the upstream training;
ablation studies (Appendix A.9) suggest it is crucial for per-
formance.

A.6. Impact of Activation Manipulation to Model
Accuracy

Upstream model accuracy. We find that the upstream
training accuracy will not be significantly affected by the
manipulation. Table 3 shows the accuracy drop is less than
0.9% for the attacks used in Section 7 and Section 8.3. For
different hyperparameter settings of the zero-activation at-
tack, Table 4 shows that the accuracy of the upstream mod-
els will drop by at most 1.9% for all the settings except the
upstream models of the gender recognition task when λ is
too high (10 or 20). The possible explanation is that the Mo-
bileNetV2 architecture used in those settings does not have
enough capacity for achieving the difference (between acti-
vations of the samples with and without the target property)
defined by λ while maintaining high task accuracy.
Downstream model accuracy. The downstream model ac-
curacy is not affected by the attack either. Table 3 shows
the averaged accuracy of the downstream models (exclud-
ing the downstream models trained for preparing meta-
classifiers) trained in Section 7 and Section 8.3. We do not
observe any accuracy drop brought by the attack, instead
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Figure 3. Inference AUC scores when upstream models are trained normally. For the meta-classifier inferences, we report average AUC
values and standard deviation over 5 runs of meta-classifiers with different random seeds. For normally trained models, only the inference
attacks that are not directly related to the manipulation are applicable. The first and second rows show results when downstream training
sets contain 5 000 and 10 000 samples respectively. Results of the inference of specific individuals for smile detection and age prediction
show similar trends and are found in Figure 14.

Task Target Property
Upstream Accuracy Downstream Accuracy

Clean
Model

Zero-Activation
Attack

Stealthier
Attack

Clean
Model

Zero-Activation
Attack

Stealthier
Attack

Gender Recognition
Specific Individuals

92.8 92.6 92.1 95.7 (95.8) 95.8 (95.8) 95.7 (95.8)
Smile Detection 73.2 73.5 73.5 90.0 (90.5) 90.4 (90.8) 90.2 (90.7)
Age Prediction 69.7 70.1 70.2 91.4 (92.4) 91.6 (92.5) 91.6 (92.6)

Smile Detection Senior 73.2 72.5 72.7 88.3 (88.9) 88.8 (89.4) 88.8 (89.3)

Age Prediction Asian 69.7 68.8 69.1 91.4 (92.5) 91.5 (92.6) 91.6 (92.7)

Table 3. Upstream and downstream model accuracy. The clean models are the models trained without attack goals (manipulation), and for
smile detection and age prediction, we directly use the pretrained ImageNet models released by PyTorch as the clean upstream models.
For the downstream accuracy, we report the averaged accuracy of the downstream models (excluding the downstream models trained for
preparing meta-classifiers) trained in Section 7 and Section 8.3. The values outside the parenthesis are the averaged accuracy for the
downstream models that are trained with 5 000 samples, while the values inside the parenthesis are the results for the 10 000 samples.

all the accuracies are slightly improved after manipulation.
Currently, we are unclear about the root cause for this ob-
servation and will leave the detailed exploration on this as
future work.

A.7. Impact of Hyperparameters

This section explores the impact of the hyperparameters,
λ and m, in the loss function of upstream model training in
Equation 3, to the effectiveness of the zero-activation attack.

Impact of λ. The hyperparameter λ in Equation 3 is di-
rectly related to the magnitude of the difference between

the downstream models trained with and without the target
property and therefore, is critical to the effectiveness of the
inference attacks (larger λ generally means more effective
attacks). In this section, we compare the inference effective-
ness on downstream models when the upstream models are
trained with different λ values. Since training the upstream
models are costly, we only choose λ from {1, 5, 10, 20}. For
the inference method, for each task, we select the best per-
forming white-box inference attacks—for the gender recog-
nition task, we choose the variance test (parameter differ-
ence test is not available for this task) and for the other two
tasks, we choose the parameter difference test, and report



Task Clean Model

Zero-Activation Atatck

λ ∥m∥1
1 5 10 20 8/1C 16/4C 32/8C 64/16C

Gender Recognition (Infer Individual) 92.8 92.5 92.6 90.3 64.1 93.2 92.6 92.5 92.8
Smile Detection (Infer Senior) 73.2 72.7 72.7 72.5 72.1 72.5 72.6 72.7 72.5
Age Prediction (Infer Asian) 69.7 69.1 69.0 68.8 67.8 68.8 68.8 68.7 68.7

Table 4. Upstream model accuracy of zero-activation attacks for different hyperparameter settings. We vary the values of λ or ∥m∥1 in the
experiments and use the remaining experimental settings in Appendix A.5.

the results in Figure 4. We also conducted experiments us-
ing black-box inference methods and results are included in
Figure 5. The rest of the settings are the same as those used
in Section 7.

Figure 4 gives the white-box inference results. For the
gender recognition and age prediction tasks, by comparing
different lines corresponding to different λ values, the gen-
eral trend is if we increase λ, the inference AUC scores will
first (expectedly) increase and then decrease. For example,
for gender recognition, increasing λ from 1 to 5, the AUC
scores are consistently improved in all settings with vary-
ing number of target samples in the downstream training set
(the average AUC score increases from 0.84 to 0.94). But
further increasing λ to 10 and 20 does not help and the in-
ference performs consistently worse as λ gets larger (e.g.,
average AUC score drops from 0.89 of λ = 5 to 0.50 of
λ = 20). In contrast, for smile detection task, the inference
performance continues to increase as we increase λ in gen-
eral. For all the tasks, we initially observe increased attack
effectiveness by increasing λ because larger λ makes the
distinction between downstream models trained with and
without property more significant and hence is easier for the
subsequent inference attacks. But when λ gets too large, for
settings where the inference effectiveness decreases, we ob-
serve that the loss function related to the attacker goal (lt(·)
in Equation 2) starts to interfere with the main task training
(lnormal(·)) and fails to converge at the end of upstream train-
ing (Table 4). For smile detection, lt(·) still converges well
(may be because the upstream model has enough capacity)
and hence the inference effectiveness continues to increase
as the increase of λ.

In Figure 4, although the choice of λ does have some im-
pact on the inference effectiveness, we find that our attack
still works quite well for a wide range of λ values. For ex-
ample, for gender recognition, AUC scores are quite high
and exceed 0.9 if ≥ 10 samples are with the target prop-
erty when the value of λ is between 1 and 10; for the other
two tasks, when the value of λ is between 5 and 20, AUC
scores also exceed 0.9 if ≥ 20 samples are with the target
property. We have similar observations as above (i.e., the
trend of inference effectiveness as λ changes and good at-

tack performance for a wide range of λ) when we replace
the white-box inference methods with black-box ones and
details can be found in Figure 5.

Impact of m. The hyperparameter m controls the loca-
tion and number of activations selected for manipulation in
Equation 3. We empirically find that, with the same size of
activations ∥m∥1, the location of m does not have a signifi-
cant impact on attack effectiveness, and therefore, we fix the
selection of manipulated activations to be the first nt activa-
tions (i.e., first nt entries in m are 1) and vary the value of nt

to measure its impact on the attack performance. The rest of
the experimental settings are the same as in Section 7. We
choose the first 8, 16, 32 and 64 of the total 1 280 activations
as the secreting activations for the gender recognition task.
For the smile detection and the age prediction tasks, we se-
lect the first 1, 4, 8, and 16 channels out of 256 channels as
the secreting activations.

The inference methods adopted are the same as those in
the study of the impact of λ and the white-box results are re-
ported in Figure 6. From the figure, we observe that, in gen-
eral, the inference effectiveness increases as we increase the
number of selected activations (i.e., ∥m∥1), but when ∥m∥1
gets too large, it in turn starts to hurt the inference effective-
ness. The possible reason is still similar to the one in the
study of the impact of λ: initially, when more activations are
selected for manipulation, the difference between the down-
stream models trained with and without the target property
will be more significant, and makes the subsequent infer-
ence attacks more effective. But when ∥m∥1 gets too large,
it starts to interfere with the main task training and has con-
vergence issues. From Figure 6, we also observe that the in-
ference AUC scores remain high across all selections of m.
For example, AUC scores are all > 0.9 when ≥ 20 down-
stream training samples have the target property for gender
recognition and smile detection and when ≥ 50 downstream
training samples are with the target property for age predic-
tion. Those results suggest that the attack is robust to the
setting of m and it is easy to find proper m for the attack in
practice. Similar observations are also found when we re-
place the white-box inference methods with black-box ones
(details in Figure 7).
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Figure 4. Inference AUC scores of white-box methods for different values of λ (Equation 3). All downstream training sets have 5 000
samples. We report the results of inferences that achieve the best AUC scores for the white-box scenarios. Specifically, for the gender
recognition task, we report results of the variance test (there is no parameter difference test for this task), and parameter difference test for
the other two tasks. Results of the black-box inferences show a similar trend (Figure 5).
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Figure 5. Inference AUC scores of black-box inferences for different values of λ (Equation 3). All the downstream training sets have 5 000
samples in these results. We only report the results of the better performing black-box inference method (i.e., the black-box meta-classifiers)
here. The results of the white-box attacks show a similar trend and can be found in Figure 4.

A.8. Impact of the knowledge of the size of the down-
stream set

In Section 7, when conducting property inference with
meta-classifiers, the attacker trains shadow models using
the same downstream training set size n as the victim. In
this section, we show that, for meta-classifier-based attacks,
the knowledge of downstream training size used by the vic-
tim does not impact inference effectiveness much.

In the experiments, we fix the size of the victim training
set to 5 000 (i.e., n = 5 000) and vary the sizes of the (sim-
ulated) downstream training sets of the attacker. Specifi-
cally, we set the attacker training size to 2 500, 5 000, 7 500,
and 10 000 separately and remaining experimental setups
are kept the same as in Section 7.

Figure 8 shows the inference results of the meta-
classifier-based approaches. For both the white-box and
black-box methods, varying the training set size has negligi-
ble impact on the inference performance: for the black-box
approach, the purple lines stay very close to each other and

the AUC scores all exceed 0.8 when ≥ 20 samples out of
the total 5 000 samples have the target property and exceed
0.95 when ≥ 50 samples are with the property. Similarly,
for the white-box meta-classifiers approach, the green lines
also stay close to each other and the AUC scores all exceed
0.9 when ≥ 100 samples have the target property.

A.9. Importance of Distribution Augmentation

In Appendix A.1, we introduce distribution augmenta-
tion for upstream training, which injects representative sam-
ples without the target property into the upstream training
set to better achieve the attack goal described in Equation 3.
Figure 9 shows the attack performance when we do not use
distribution augmentation. The victim training set size is
set to 5 000 and other experimental setups are the same as
those in Section 7. From the figure, we observe that AUC
scores of attacks without distribution augmentation are all
less than 0.86, and get even lower (< 0.7) for gender recog-
nition and smile detection. These scores are significantly
lower than the results with distribution augmentation (de-
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Figure 6. Inference AUC scores of of white-box methods for different number of activations (the m in Equation 3). All downstream training
sets have 5 000 samples. We only report results of inferences that achieve the best AUC scores (variance test for gender recognition and
parameter difference test for the other two tasks). Results of the black-box inferences show a similar trend (Figure 7).
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Figure 7. Inference AUC scores of black-box inferences for manipulating different number of activations (the m in Equation 3). All the
downstream training sets have 5 000 samples in these results. We only report the results of the better performing black-box inference
method (i.e., the black-box meta-classifiers) here. The results of the white-box attacks show a similar trend and can be found in Figure 6.

tails in Figure 12 and 1). For example, with the augmenta-
tion, AUC scores all exceed 0.9 if more than 20 samples are
with the target property and the importance of distribution
augmentation is thus apparent.

A.10. AUC values < 0.5

We observe that a few attack settings have AUC scores
consistently below 0.5. Those rare abnormal AUC scores
mainly occur for black-box methods against normal pre-
trained models (e.g., the confidence score test and black-
box meta-classifier for the gender recognition with 10 000
downstream samples in Figure 3.) For the confidence score
test, by manual inspection, we find its working assumption
is not satisfied by the downstream models fine-tuned from
normal pretrained models in some settings. The confidence
score test assumes models trained with the property per-
form better on samples with the property than those trained
without the property, but an opposite pattern is observed for
the queried downstream models. As for black-box meta-
classifiers, we observe the anomalies happen when the in-

ference tasks are too challenging and the meta-classifiers
cannot obtain meaningful information but overfit to the
training set (despite early stopping). Specifically, AUC
scores are high (> 0.75) on the training set, ∼ 0.5 on the val-
idation set, and show anomalies (< 0.5) on the test set. We
note that the gap between the validation set and the test set
is large because they are trained differently. When training
downstream models with the target property for the train-
ing and validation set, we randomly sample 1-170 samples
with the property each time to simulate the real-world case
(discussed in Appendix A.3), while for the test set, we ran-
domly sample fixed number of samples with the property
for each AUC computation (e.g., 1, 2, ..., 150) to show the
trend. We reemphasize that those anomalies mainly happen
in the non-manipulation settings because of the limitation
of inference methods on normal pretrained models when
the inference tasks are too challenging. Our proposed ma-
nipulation (e.g., providing stronger signal) lowers the diffi-
culty of those challenging cases and leads to better/normal
results.
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Figure 8. Inference AUC scores of meta-classifiers when the shadow models of the meta-classifiers are trained on datasets of different
sizes. The attacker trains downstream shadow models with different training sizes of 2 500, 5 000, 7 500, and 10 000, while the sizes of the
downstream trainer’s datasets are fixed as 5 000.

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
fe

re
nc

e 
AU

C

Gender Recognition; Infer Individual

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Smile Detection; Infer Senior

1 2 3 4 5 10 20 50 100150
Number of samples with the target property

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Age Prediction; Infer Asian
Confidence score Black-box meta-classifier White-box meta-classifier Variance Difference

Figure 9. Inference AUC scores when upstream models are not trained with distribution augmentation (Appendix A.1). All the downstream
training sets have 5 000 samples in these results.

A.11. Inferring Multiple Properties Simultaneously
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Figure 10. Inference AUC scores when considering multiple prop-
erties simultaneously. The inference task is to infer two individuals
in the gender recognition setting. The downstream set has 5 000
samples.

In this section, we demonstrate that the attack described
in Section 4 can be extended to infer multiple target prop-
erties simultaneously. The method is to simply associate
different secreting parameters with each property. We con-
ducted experiments using the gender recognition setting
with some modifications. The new target properties are the
two individuals with the most samples in VGGFace2. In
the upstream training, we inject 285 and 257 samples with
the property into the upstream training set for the two in-
dividuals respectively; we also inject 1 425 samples with-
out the target properties (distribution augmentation in Ap-
pendix A.1). For each property, the number of scereting ac-
tivations is 8 (i.e., ∥m∥1 = 8). For the downstream training,
the candidate set has 250 samples for each target property
and 200 000 samples without the target properties. The rest
settings are the same as those in Appendix A.5. The ma-
nipulation does not affect the accuracy of the main tasks too
much (accuracy drop less than 0.6%). The inferences are
also highly successful. Figure 10 summarizes the results
of the variance test in discriminating downstream models



trained with a target property from those trained without
target properties. The results show that AUC scores exceed
0.85 when ≥ 10 out of 5 000 samples are with the prop-
erty, and are higher than 0.95 when ≥ 50 samples have the
property.

A.12. Details on Anomaly Detection for Zero-
Activation Attack

We consider three common anomaly detection methods:
K-means [20], PCA [1] and Spectre [17], where Spectre is
the current state-of-the-art. K-means leverages the k-means
clustering technique to identify outliers while PCA lever-
ages principal component analysis to identify the outliers.
Spectre is an improved version of PCA and works much bet-
ter than PCA when the attack signature is weak (i.e., the dis-
tributional difference is small) [17]. When conducting the
anomaly detection, following the common setup in Hayase
et al., [17], we filter out 1.5nt (nt is number of samples with
target property) samples, simulating the scenario where the
defender does not know the exact nt, but is able to roughly
estimate its value and attempt to find most of them.
Results of Anomaly Detection. We show the detection
performance in Figure 11. The results show that conduct-
ing anomaly detection can filter out majority of samples
with the target property in the downstream set and hence,
increase the chance of detecting the manipulation. For ex-
ample, the Spectre defense can filter out 80% of the samples
with the target property in most cases for gender recognition
and smile detection, and 60% for age prediction. Anomaly
detection effectively finds samples with the target property
because the attack mainly focuses on improving attack ef-
fectiveness by increasing the distinction between samples
with and without property, which makes the attack signa-
ture of samples with property much stronger. After finding
the possible samples with the target property, the defender
can then inspect those samples, and try to find the common-
alities and then identify the potential target property. Since
the process of finding commonalities in the outliers reported
by anomaly detection could be trivial (e.g., most samples
have the same property or abnormal activations), we do not
perform actual experiments for this part. In Section 8.2,
we propose a stealthier design, in which anomaly detection
cannot reliably detect samples with the target property and
thus cannot find the manipulation.

A.13. Experimental Setup of Stealthier Attacks

In Section 8.3, when preparing upstream models, for m,
we randomly select 16 activations out of total 1 280 for the
gender recognition and also select 196 activations out of to-
tal 50 176 for smile detection and age prediction. In prac-
tice, the total number of channels in convolutional kernels
is not very large and therefore, the defender may still be
able to brute-force the manipulated activations if m is cho-

sen only at the channel level. Thus, we also choose to se-
lect secreting activations directly for tasks where the first
layer of the downstream model is convolutional, which may
reduce some of the attack effectiveness. For λ, we prefer
a larger value for better inference effectiveness while still
evading anomaly detection. Therefore, we performed a lin-
ear search starting from 1 and incrementing it by 0.5, and
terminating when the attack can no longer evade the men-
tioned anomaly detection methods. With this strategy, we
set λ = 2 for gender recognition, λ = 1.5 for smile detec-
tion and age detection when the inference targets are senior
people and Asian people respectively, and λ = 1 for smile
detection and age detection when the inference targets are
specific individuals. α, β, and γ are all set to be 1 in the
experiments.

A.14. Adaptive Activation Distribution Checking

The activation distribution checking method needs to be
adjusted based on the specific attack method used. Using
the modified loss design in Section 8.2, our stealthier attack
can automatically evade distribution checking of abnormal
zeros, as the secreting activations of samples without target
property are also non-zero. Hence, we need to design adap-
tive detection based on activation distribution checking for
the modified attack loss.

With the modified attack loss, we find that activations
of samples with the property mixes well with ones with-
out the property, and we fail to find a principled method to
distinguish their distribution using the overall activations.
Because of the design of the attack loss, the main distribu-
tional difference comes from the distributional difference in
the secreting activations for samples with and without prop-
erty (i.e., distributional difference is most significant when
we only measure secreting activations), to make progress,
we assume the defender will follow a two-stage strategy of
first identifying the selected secreting activations and then
identifying the distributional difference in the potential se-
creting activations, with a hope that the distributional differ-
ence is significant enough to be detected1.

Since m is randomly generated with proper number of
nonzeros, the brute-force strategy for identifying m is com-
putationally infeasible. For example, for gender recognition
experiments, defenders have to try a total of

(
1,280

16

)
(> 2e36)

forms of m (i.e., ∥m∥1 = 16 for a total of 1,280 activations).
Therefore, alternatively, we present two methods that at-
tempt to approximately identify m with the hope that the ap-
proximately well identified m̂ still preserves the significant
distributional difference of m. The two methods we design
are based on the fact that: 1) samples with the target prop-
erty are rare for practically interesting settings, and 2) in the

1We do not exclude the possibility of identifying the distributional dif-
ference by still checking the overall distribution, and leave further explo-
ration of such detection strategies as future work.
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Figure 11. Percentage of samples with the target property detected by the anomaly detection for the zero-activation attack. Similar to [17],
we filter out n×1.5 samples with anomaly detection, where n is the number of samples in downstream training data with the target property.
We report the number of samples with the target property filtered out divided by n as the Detection Percentage; values are averaged (with
standard deviation) over 5 runs of anomaly detection. The ‘5K’ lines report detection results on the settings with 5 000 total samples, while
the ‘10K’ lines report for 10 000 total samples.

modified loss design, secreting activations of samples with-
out the property are smaller in magnitude than the ones of
samples with the property. Therefore, if we randomly feed
inputs to the model, most of the inputs are without property
and hence, their corresponding secreting activations should
be smaller. With these two principles, we design two de-
tection methods: the first one averages the outputs of each
activation for all the fed inputs and treats activations with
smaller average values as the potential secreting activations
(average value based detection); the second approach han-
dles individual input separately and identifies potential se-
creting activations for each of them, and then returns the
intersection for all the potential secreting activations iden-
tified (intersection based detection). Empirically, we find
that both approaches cannot identify the secreting activa-
tions well (details are shown below) and hence did not fur-
ther explore how to check distributional difference on the
identified secreting activations in this paper.

Experimental Settings. To evaluate the performance of
average value based detection, we measure the detection
rate, which is the fraction of actual secreting activations in
identified potential activations. For the intersection based
method, since the size of final returned secreting activations
can vary (due to intersection over multiple inputs) for dif-
ferent settings, we evaluate the defense performance by re-
porting their F1-score (viewing actual target as the positive
class and others as negative). When running these two de-
tections, we consider an idealized scenario for the defender,
where all the randomly sampled inputs are without target
property and so, their secreting activations are even smaller
for manipulated models and are easier to be detected by the
defender.

Specifically, for average value based detection, we
choose n × 1.5 activations that have the smallest average

values as the identified possible secreting activations (nip),
where n is the number of actual secreting activations (n =
∥m∥1). We report the number of identified actual secreting
activation (nia) divided by n as the detection rate. For inter-
section based detection, the nip of this method is the number
of activations remained after intersection operations, and
we cannot precisely control this number. Therefore, only
reporting the detection rate like the average value based de-
tection could introduce bias, and we use the F1-score as the
metric instead, where the precision is defined as nia

nip
and the

recall is defined as nia
n . And for this detection method, for

each sample, we also need to select some activations that
have the smallest values as the inputs for conducting the in-
tersection operation. We tried many choices for the number
of those activations, and find that choosing n×5 smallest ac-
tivations for each sample achieves the best F1-score. In the
experiments, we tried to use 100, 500, 1 000, 2 000, 4 000,
8 000, 10 000 samples to generate activations values, sepa-
rately. For each setting, we repeat each detection 5 times
and calculate the average value of the detection rate or F1-
score.
Detection Results. Empirically, we find that the two ap-
proaches cannot sufficiently identify the secreting activa-
tions — the detection rate of secreting activations of the first
method is less than 11.3% for gender recognition and is less
than 1.5% for smile detection and age prediction for all set-
tings; the F1-score of the secreting activation detection of
the second method is less than 0.009 for all settings. In fact,
using the second approach, the returned secreting activa-
tions are empty sets in most settings, implying the difficulty
of identifying the secreting activations by simply checking
the magnitude. Overall, the detection performances of both
approaches are low and better detection methods are needed
for identifying m in the future.
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Figure 12. Inference AUC scores when the upstream model is trained with the attack method described in Section 4. Baseline scores (the
baseline lines) are the maximum of the AUC scores (of the three inference methods) of the baseline experiments in Appendix A.4. The
inference of specific individuals for smile detection and age prediction are similarly successfully and found in Figure 15 in the appendix.
The downstream training sets have 5 000 samples in the results, and the results for the 10 000 samples are in Figure 1.
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Figure 13. Inference AUC scores of black-box meta-classifiers equipped with and without query tuning. We reuse the upstream and
downstream models trained in Figure 1.
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Figure 14. Inference AUC scores when the upstream model is not trained with attack goals. The first and second rows show results when
downstream training sets contain 5 000 and 10 000 samples respectively. The inference targets are specific individuals for smile detection
and age prediction; the results of other inferences show a similar trend and are found in Figure 3.
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Figure 15. Inference AUC scores when the upstream model is trained with the attack goals described in Section 4. The first and second rows
show results when downstream training sets contain 5 000 and 10 000 samples respectively. The inference targets are specific individuals
for smile detection and age prediction; the results of other inferences show a similar trend and are found in Figure 1.
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Figure 16. Percentage of samples with the target property detected by the anomaly detection for the stealthier attack. Similar to [17], we
filter out n × 1.5 samples with anomaly detection, where n is the number of samples in downstream training data with the target property.
We report the number of samples with the target property filtered out divided by n as the Detection Percentage; values are averaged (with
standard deviation) over 5 runs of anomaly detection. The ‘5K’ lines report detection results on the settings with 5 000 total samples, while
the ‘10K’ lines report for 10 000 total samples. Inference targets for smile detection and age prediction are senior people and Asian people
respectively; results for the inference of specific individuals follow similar trends (Figure 18).
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Figure 17. Inference AUC scores of the stealthier design. Since the secreting activations are no longer zero, the inference methods based
on difference or variance tests are no longer applicable. Inference targets for the smile detection and age prediction are senior people and
Asian people respectively; inference of specific individuals also shows improvement compared to the baseline settings (Figure 19). The
downstream training sets have 5 000 samples in the results; results for 10 000 samples show similar trends and are in Figure 2.
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Figure 18. Percentage of samples with the target property detected by anomaly detection for the stealthier attack. The inference targets are
specific individuals for smile detection and age prediction; the results of other inferences show a similar trend and are found in Figure 16.
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Figure 19. Inference AUC scores of the stealthier attack. The first and second rows show results when downstream training sets contain
5 000 and 10 000 samples respectively. The inference targets are specific individuals for smile detection and age prediction; the results of
other inferences show a similar trend and are found in Figure 2.
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