
5.1. Appendix
5.2. Proof of Theorem 1

We provide complete proof of the main theorem. We will
first reiterate the notations used in the main paper.

Problem Setup. Let x 2 Rd denote an ID data and the
corresponding label y is generated by a ground truth linear
model ✓⇤ 2 Rd, i.e., y = ✓T⇤ x. To construct the training
set, we sample n training data, where n < d, and stack the
sampled data into a data matrix Xtr 2 Rd⇥n. Accordingly,
the labels form a vector Ytr = XT

tr✓⇤ 2 Rn. The training
goal is to minimize the empirical loss.

L(Xtr,Ytr; ✓) = kXT
tr✓ �Ytrk2 (8)

Note that this forms an over-parameterized linear sys-
tem, i.e., there are more parameters than equations, because
n < d. This is similar to how modern neural networks are
over-parameterized with respect to the data.

Complementary Decomposition using SVD. For the
analysis, we make an independence assumption on the data
matrix Xtr. This assumption exists for notation simplicity
and can be relaxed easily.

Assumption 2. Let the n training data be linearly indepen-
dent. The following SVD exists for the data matrix Xtr.

Xtr = U⌃VT , U 2 Rd⇥n,⌃ 2 Rn⇥n,V 2 Rn⇥n.

Consequently, we can decompose any vector x 2 Rd

into two components, x = U⌧ + U?⌧?, where U is the
basis for the span of training samples, U? 2 Rd⇥(d�n) is
the basis for the complementary subspace, and ⌧ 2 Rn,
⌧? 2 Rd�n are the corresponding coordinates. There are
infinitely many solutions to Eq. 8 because this is an over-
parameterized system. The classic result states that,

✓ = U⌃�1VTYtr +U?�?, (9)

where �? 2 Rd�n can be any vector. We denote a projected
model as ✓̃ = ✓0+↵(✓�✓0) (obtained using Eq. 3 or Eq. 4),
where ✓ is one minimizer of Eq. 8, ✓0 is the pre-trained
model and 0  ↵  1 is the projection ratio.

To quantify the effects of projection ↵, we can look at
the average performance of the projected model ✓̃ on test
data. Consequently, we investigate the expected loss of the
projected model over the entire data space.

E[L(x, y; ✓̃)] = E
h���✓̃Tx� y

���
2

i
(10)

We now provide a detailed proof of Theorem 1 in the main
paper. We first prove two lemmas.

Lemma 1. k(✓ � ✓⇤)TU⌧k2 = 0.

Proof. To show it, we use the decomposition in Eq. 9.

k(✓ � ✓⇤)
TU⌧k2 = kU⌃�1VTYtr +U?�? � ✓⇤)

TU⌧k2
= k(U⌃�1VTYtr � ✓⇤)

TU⌧k2
= k(U⌃�1VTXT

tr✓⇤ � ✓⇤)
TU⌧k2

= k(U⌃�1VT (U⌃VT )T ✓⇤ � ✓⇤)
TU⌧k2

= 0

Lemma 2. kU⌧k2  k⌧k2 and kU?⌧?k2  k⌧?k2.

Proof. We first invoke the definition of matrix norm,

kUk2 = sup
⌧ 6=0

kU⌧k2
k⌧k2

From the definition, it is easy to see that

kU⌧k2  kUk2k⌧k2.

Now recall that both U 2 Rd⇥n and U? 2 Rd⇥(d�n)

are orthonormal matrices. Therefore, using the property of
L2 matrix norm,

kUk2 =
q
�max(UTU) = �max(U) = 1

where �max(·) and �max(·) denote the largest eigenvalue
and singular value respectively. Therefore,

kU⌧k2  k⌧k2.

The same analysis extends to U?, ⌧?.

Next, we proceed with the proof of the main theorem.

Proof.

L(x, y; ✓̃) =
���✓̃Tx� y

���
2

=
��(✓0 + ↵(✓ � ✓0))

Tx� ✓T⇤ x
��
2

= k(✓0 + ↵(✓ � ✓0)� ✓⇤)
TU⌧+

(✓0 + ↵(✓ � ✓0)� ✓⇤)
TU?⌧?k2

 k((1� ↵)(✓0 � ✓⇤) + ↵(✓ � ✓⇤))
TU⌧k2| {z }

A

+

k(✓0 � ✓⇤)
TU?⌧?k2| {z }

B

+ k↵(✓ � ✓0)
TU?⌧?k2| {z }

C



We use triangle inequality for the last inequality. We can
now bound A using Lemma 1, Cauchy-Schwarz inequality
and Lemma 2 as

k((1� ↵)(✓0 � ✓⇤) + ↵(✓ � ✓⇤))
TU⌧k2

= (1� ↵)k(✓0 � ✓⇤)
TU⌧k2

 (1� ↵)k(✓0 � ✓⇤)k2kU⌧k2
 (1� ↵)k(✓0 � ✓⇤)k2k⌧k2.

Similarly, we can bound B using Cauchy-Schwarz in-
equality and Lemma 2 as

k(✓0 � ✓⇤)
TU?⌧?k2  k✓0 � ✓⇤k2kU?⌧?k2

 k✓0 � ✓⇤k2k⌧?k2,

and bound C as,

k↵(✓ � ✓0)
TU?⌧?k2  k↵(✓ � ✓0)k2U?⌧?k2

 k↵(✓ � ✓0)k2k⌧?k2.

Now, plug everything back. We arrive at the final result,

L(x, y; ✓̃)  (1� ↵)✏k⌧k2 + (✏+ ↵k✓ � ✓0k2)k⌧?k2

where ✏ = k(✓0 � ✓⇤)k2.

5.3. Group Based Total Variation Smoothing
Because of the iterative and incremental nature, the

vanilla TPGM algorithm is a greedy algorithm, meaning
that it judges the immediate benefit of the current updates to
the model weights. If the current updates are not consistent
with the validation data, they will be removed by projection,
i.e., the projection radii will not increase to accommodate
the new changes. Consequently, projection radii learned by
TPGM could be overly conservative and lead to underfitting
because gradient updates are stochastic, whose benefits may
only show up in the long run. Empirically, we found TPGM
results in under-fitting in some cases, i.e., slightly lower ID
performance. To mitigate this side-effect of iterative op-
timization, we propose a group-based total variation (TV)
smoothing for the projection parameters. TV is a common
technique to improve smoothness in image denoising [1]
and general signal processing [3]. We propose to utilize
TV regularization to enforce a heuristic on the optimization
of �: projection ratios of layers in the same group should be
similar to each other. Specifically, modern neural network
architectures such as ResNet [14] and Transformer [37] are
modular and stacked with groups (blocks). It is easy to iden-
tify unique groups in each architecture and assign layers to
each one of them. Therefore, let G = {gi|i = 0, ...,M}
be the set of unique groups in a neural network. The loss

function that we optimize for the projection parameters is
updated as the following,

L� = L(x, y; �t) + µ
X

gi2G

X

i2gi

|↵i � ↵i�1| (11)

where µ is a hyperparameter requiring tuning.

5.4. Implementation
In Alg. 2, the projection update function has its own op-

timizer. In our implementation, we use the Adam [20] op-
timizer because of its capability of adapting learning rate.
Even though this introduces other hyperparameters, we find
the same set of hyperparameters worked well for all exper-
iments. Specifically, we use the default settings and a con-
stant base learning rate of ⇣ = 1e� 2.

ResNet experiments (Sec. 4.1). We list all the compared
methods and their method-specific tuning to reproduce our
results.

• Vanilla Fine-Tuning (FT): We fine-tune all layers and
sweep five learning rates (CLIP best ⌘0 = 1e � 3,
MOCO best ⌘0 = 5e� 2).

• Linear Probing (LP): We only fine-tune the head
classifier and sweep five learning rates (CLIP best
⌘0 = 1e� 1, MOCO best ⌘0 = 1e� 1).

• Partial Fusion (PF) [19]: We fine-tune all the batch-
norm layers and the head classifier, and sweep five
learning rates (CLIP best ⌘0 = 1e � 2, MOCO best
⌘0 = 5e� 2).

• L2-SP [44]: We add L2-SP regularization, use the
best-validated learning rate from FT, and sweep five
three regularization hyperparameters (CLIP best µ :
1e� 2, MOCO best µ : 1e� 3).

• MARS-SP [9]: We add MARS projection (Eq 4), use
the best-validated learning rate from FT, and sweep
five three projection hyperparameters (CLIP best µ =
64, MOCO best µ = 16).

• LP-FT [21]: We first LP for 25 epochs, using the best
LP learning rate, and FT for another 25 epochs, sweep-
ing five learning rates (CLIP best ⌘0 = 1e� 3, MOCO
best ⌘0 = 5e� 2).

• TPGM: We learn per-layer L2 projection radii incre-
mentally, sweeping five learning rates (Eq. 3) (CLIP
best ⌘0 = 1e � 2, MOCO best w/o smoothing ⌘0 =
1e � 2, MOCO w/ smoothing best :⌘0 = 4e � 2 and
µ = 0.1).

Transformer Experiments (Sec. 4.2). We follow some
common practices used in prior works [34, 35] to boost



fine-tuning performance. Note that we use the same train-
ing recipe for all methods unless otherwise specified. For
example, linear probing performs worse when augmenta-
tions are used [28]. Now we will list the techniques used
as well as their corresponding hyperparameters in parenthe-
sis. Specifically, we use label-smoothing (0.1) [32], weight-
decay (0.1), Mixup (0.8) [49] and Cutmix (1.0) [47]. We
fine-tune models using the AdamW optimizer [24] for 30
epochs with a warm-up period of 5 epochs [34], per-step
cosine decay schedule [12] and a batch size of 512. We list
all the compared methods and their method-specific tuning
to reproduce our results.

• Vanilla Fine-Tuning (FT): We fine-tune all layers and
sweep three learning rate ⌘0 2 {1e�5, 2e�5, 3e�5}.

• Linear Probing (LP): We only fine-tune the head
classifier and sweep three learning rates ⌘0 2 {5e �
2, 1e � 2, 5e � 3}. We don’t use any data augmen-
tations (e.g., label-smoothing, Mixup and Cutmix) as
they decrease LP performance.

• BitFit [48]: We fine-tune all the bias terms and the
head classifier and sweep three learning rate ⌘0 2
{5e� 2, 1e� 2, 5e� 3}.

• L2-SP [44]: We add L2-SP regularization, use the
best-validated learning rate from FT, and sweep three
three regularization hyperparameters µ 2 {1e�5, 1e�
4, 1e� 3}.

• LP-FT [21]: We first LP for 15 epochs, sweeping three
learning rates ⌘0 2 {5e�2, 1e�2, 5e�3}, and FT the
best-validated model for another 15 epochs, sweeping
three learning rate ⌘0 2 {1e� 5, 2e� 5, 3e� 5}.

• Zero-Shot [28]: We run an inference with the pre-
trained CLIP model with the extracted zero-shot clas-
sifier.

• WISE [41]: We linearly interpolate the best validated
FT model and the pre-trained model with a ratio of 0.5.

• TPGM: We learn per-layer projection radii between
the best validated FT model and the pre-trained model
using the MARS projection (Eq. 4).

5.5. CLIP Pre-trained ViT-L on ImageNet
In Sec. 4.2, we presented fine-tuning results on ImageNet

using CLIP pre-trained ViT-b. In this section, we conduct
the same experiments with CLIP pre-trained ViT-L. As we
noticed in the ViT-b experiments, WISE and TPGM per-
form much better than other competitors, so we focus on
the comparison between the two here. We first present tab-
ulated results in Tab. 5. We observe that TPGM improves
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Figure 5. ID and OOD performance of TPGM and WISE
with different hyperparameters using CLIP pre-trained ViT-
L, fine-tuned on ImageNet. Sweeping different hyperparame-
ters for both WISE and TPGM shows that learning per-layer con-
straints is superior to learning a single constraint.

both ID and OOD performance over vanilla FT. To com-
pare fairly with WISE, we introduced TPGM-C (Sec. 4.2),
which uses an L2 regularization on the learned projection
radii to control the distance to the pre-trained model. With
proper regularization, TPGM-C outperforms WISE on both
ID and OOD performance. We also provide a figure of
ID vs. OOD performance with different WISE interpola-
tion ratios and different TPGM-C regularization strengths
in Fig. 5. We observe the same trend as in the ViT-b exper-
iments (Sec. 4.2): at the same ID performance, TPGM has
better OOD performance.

5.6. Comparisons between TPGM-L2 and TPGM-
MARS

In the main paper, we presented two possible projections:
L2 projection (Eq. 3) and MARS projection (Eq. 4). Both
projections provide closed-form solutions. We can use ei-
ther of them in TPGM. In this section, we present compar-
isons between the two.

ResNet Experiments on DomainNet. For ResNet ex-
periment in Sec. 4.1, we use a CLIP pre-trained ResNet50
and an ImageNet pre-trained ResNet50. For TPGM, we use
fproj = 1 and Tproj = 1. In Tab. 6, we compare the per-
formance of TPGM using MARS and L2 projections on
DomainNet-Real with 100% of its data. We observe that
in this setting MARS performs better than L2 projection.

Transformer Experiments on ImageNet. For Trans-
former experiments in Sec. 4.2, we use a CLIP pre-trained
ViT-B. For TPGM, we use fproj = T � 1 and Tproj = 200.
Following the main paper, we add L2 regularization to the
projection radii and sweep a range of values from 4e� 3 to
1e � 4. In Fig. 6, we compare the performance of TPGM



Table 5. ImageNet Results using CLIP pre-trained ViT-L. TPGM improves OOD performance significantly without losing ID perfor-
mance. TPGM-C achieves the best OOD performance while maintaining a more competitive ID performance compared to the current
state-of-the-art method WISE. TPGM-C is a controlled variant of TPGM, designed to lower its ID performance to the same level as WISE
for a fair comparison of OOD performance.

ID OOD Statistics
ImageNet ImageNet-V2 ImageNet-A ImageNet-R ImageNet-S ID Avg. OOD Avg. ID � (%) OOD � (%)

Vanilla FT 87.24 79.25 49.67 63.29 61.62 83.25 58.19 0.00 0.00
Zero-Shot [28] 75.00 69.95 52.21 71.69 58.24 72.48 60.71 -12.94 4.33

WISE [41] 85.33 78.50 58.26 75.37 64.84 81.92 66.16 -1.60 13.68

TPGM-C 86.02 78.83 59.29 76.32 65.00 82.43 66.87 -0.99 14.91
TPGM 87.00 79.81 58.31 74.41 65.13 83.41 65.95 0.19 13.33

Table 6. Comparison between MARS and L2 projections on
DomainNet using ResNet50.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg.

CLIP MARS 83.64 38.78 43.11 28.70 48.01 39.65
L2 82.72 37.18 43.33 25.99 45.71 38.05

MOCO MARS 81.66 35.97 46.68 20.34 46.11 37.27
L2 81.66 33.96 45.82 18.71 44.45 35.74
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Figure 6. Comparison between MARS and L2 projections on
ImageNet using ViT-B.
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Figure 7. WISE interpolation ratio sweeping using CLIP pre-
trained ResNet50 on DomainNet.

using MARS and L2 projections on ImageNet ID and OOD
datasets. We observe that L2 projection always outperforms
MARS projection in this setting.

5.7. WISE for CLIP Pre-trained ResNet
The prior work [41] and our experiments in Sec. 4.2 veri-

fied that CLIP pre-trained Transformers have very good lin-

Table 7. DomainNet Results using MOCO-V3 pre-trained
ResNet50 Results with 100% Real Data. TPGM without TV
smoothing achieves the best OOD performance but with slightly
worse ID performance compared to vanilla FT. TV smoothing can
effectively mitigate this negative effect.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg

Vanilla FT 81.99 31.52 42.89 18.51 44.98 34.47

TPGM w/o TV 81.66 35.97 46.68 20.34 46.11 37.27
TPGM w/ TV 82.66 35.35 46.20 20.13 45.75 36.86

ear connectivity. This means that when linearly interpolat-
ing between the pre-trained model and a fine-tuned model,
the output does not degrade much. In this case, we observe
significantly improved OOD generalization with minimal
ID performance loss. However, the same trend is not ob-
served when switching the architrave to ResNet50. Simi-
lar to the prior work [41], we extract a zero-shot classifier
for DomainNet classes using a CLIP pre-trained ResNet50
and conduct the same linear interpolation ratio sweeping
as in the main paper. In Fig. 7, we plot ID performance
against the OOD performance of WISE with different ra-
tios, the pre-trained (zero-shot) model, and the vanilla fine-
tuned model. Notably, we observe a significant drop in per-
formance when interpolating between the pre-trained model
and a fine-tuned model. This shows that CLIP pre-trained
ResNet does not enjoy the same linear connectivity as its
Transformer counterpart.

5.8. Smoothing Comparison using MOCO-V3
In the main paper, we found that training with MOCO-

V3 pre-trained ResNet50 on DomainNet can benefit from
total variation (TV) smoothing (Appendix 5.3). Here we
show a detailed comparison between TPGM with and with-
out smoothing for this particular setting in Tab. 7. We
observe that TPGM without smoothing achieves the best
OOD performance however with a slight decrease in ID
performance compared to vanilla FT. This might be caused
by the conservative nature of TPGM as discussed in Ap-
pendix 5.3. When TV smoothing is added, we observe that
TPGM brings improvement to both ID and OOD perfor-



mance over vanilla FT.

5.9. Computation Overhead
TPGM inevitably adds some computation overhead to

a vanilla fine-tuning pipeline (though not inference). The
majority of computation cost comes in Alg. 2, where the
algorithm needs to conduct gradient updates on the projec-
tion parameters. While this overhead is negligible when we
set ffreq = T � 1, i.e., projection update is only called
once at the end of training as in the Transformer experi-
ments (Sec. 4.2), the overhead increases when ffreq = 1.
In our ResNet experiments (Sec. 4.1), to decrease compu-
tation cost, we only the update projection parameters once
during each call, i.e, Tproj = 1. Qualitatively, we see an
increase of training time from ⇠ 29 hours to ⇠ 34 hours
when TPGM is added, a ⇠ 17% increase. However, this
increase can be justified by the fact that manually searching
for per-layer constraints can be intractable.
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