
Supplementary Material
ORCa: Glossy Objects as Radiance-Field Cameras

1. Method Details
1.1. General Shape Operator

General Implicit Curvature Estimation. To approxi-
mate the virtual pixel lying on the object-cone intersection
surface, we find intersection points along rays that bound
the cone and approximate the surface by finding intersec-
tion points with the surface and the rays. Ideally, we would
query the sdf MLP for points along the bounding rays to
get the intersection points with the surface, however, due to
computing requirements we approximate the surface using
the second-order derivative of the local geometry. We ap-
proximate this surface in Sec. 3.2 using mean curvature
sampled around a point, ti, on ray rp(t). However, this
choice was solely based on compute and efficiency con-
straints, and other approximations such as gaussian or prin-
cipal curvature can also be used. Since our surfaces are
neural implicit surfaces, we use techniques in differential
geometry for neural implicit functions as proposed in [6]
to estimate curvature. For a general case, we can define a
shape operator, dN , on the tangent plane at point ti. The
shape operator, dN , can be expressed as follows, where H
is the Hessian operator:

dN =

(
I − n̂(t) · n̂(t)T

)
HfS

||∇fS ||
(1)

From the shape operator, we can find the curvature along
any vector v:

κv =

〈
− dN · v,v

〉
(2)

, where ⟨., .⟩ is the inner product. Using Eq. 2 we can
compute principal, mean or gaussian curvatures to estimate
the differential surface at ti. By using gaussian curvature,
for instance, we can approximate our surface to be locally
quadric such as handling surfaces that are hyperbolic. Our
ray-sphere intersection will now be able to change to ray-
ellipse, ray-hyperbolic, ray-parabolic, or ray-planar inter-
section depending on the sign of the curvature.

Note that for concave surfaces Kti < 0, so ôS will lie
outside the object and, for convex, Kti > 0, ôS will lie in-
side the object. This is a useful property as the virtual-cone

Figure 1. Comparisons on Elephant-in-the-Room dataset. We
compare a sample test viewpoint against existing techniques that
only capture an environment map. We show that our method out-
puts smoother surface normals, and diffuse and specular separa-
tion, in addition to the recovery of finer details such as the tex-
tured ceiling and the high-frequency illumination on the elephant
through the windows.

apex changes based on the curvature and our formulation is
generalizable to locally concave and convex surfaces.

1.2. Relation to Caustics

To convert the object into a camera, we model the ob-
ject’s surface as a sensor. As discussed, the center-of-
projection of the object-as-camera changes wrt geometry
and viewing direction, however, as shown by [4] [8], it must
lie on the caustic surface of the object. One way to estimate
the virtual viewpoints or the apex of the virtual cone is us-
ing the known caustic surface of the object, however, our
formulation assumes unknown geometry therefore the sur-
face is unknown. To account for this approximate the virtual
viewpoint with the closest point to the reflected rays. We
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Figure 2. Comparisons on Globe-in-the-room dataset. We com-
pare a sample test viewpoint against existing techniques that only
capture an environment map. We get better diffuse-specular sep-
aration in addition to finer specular radiance- finer details such as
the cushion are more visible.

visualize this method (Sec. 3.3) in flatland using ray-circle
intersection in Figure 4. We shoot real cones from a single
pixel at different angles, approximated by 2 bounding rays
and 1 primary ray, and intersect the real-cone with the ob-
ject. We compute surface normals (yellow) and compute the
associated reflected rays (green) and the virtual viewpoint
(magenta) using our closest-point to reflected-rays method
in Sec. 3.3. We show that by increasing the pixel reso-
lution, the real cone radius decreases projecting a smaller
virtual-pixel surface area on the object, dsj . We can calcu-
late the virtual viewpoint for this pixel and empirically show
that as dsj → 0, the virtual viewpoints along the surface
tend to form the catacaustic of the object. We can also use
our method to approximate the caustic of unknown geom-
etry and has applications in Catadioptric Imaging Systems
(CIS). Moreover, we also note that our method is limited by
the resolution of the camera viewing the object- for lower
resolution or objects further away, the virtual viewpoint will
not be accurate.

We then calculate approximates the true caustic of the
circle at higher resolutions.

2. Object-as-radiance-field Camera to Virtual
Camera

We convert the glossy object into a radiance-field camera
by modeling the objects’ surface as the virtual sensor. The

Figure 3. Glossy object’s size acts as virtual baseline On the left,
we show that the baseline for the virtual views is fundamentally
limited by the object size. On the right, we show that our envi-
ronment radiance field must learn to map radiance accumulated on
the object-surface-as-sensor to the new virtual camera image plane
with a new virtual center-of-projection to perform novel view syn-
thesis. The distortion is high for objects with varying geometry
or a low radius of curvature, but we show in our paper that our
formulation of virtual cones can handle this undistortion well even
for complex geometries.

virtual sensor accumulates radiance along its surface and we
model the 2D radiance on this surface-as-sensor as a func-
tion of the 5D environment radiance field. Each individual
virtual pixel and the associated virtual cone is defined the
object surface accumulating radiance along the object sur-
face. However, the virtual camera and the virtual view are at
a different location near the object surface. As Fig. 3 shows,
the virtual camera plane is different that the object surface
and has a different virtual center-of-projection. Therefore
Mip-NeRF must learn how to interpolate and undistort the
incoming radiance from the virtual pixels. Although the
difference between the virtual camera plane and the virtual
pixel surface is exasperated for complex-varying geometry
and low radius of curvature, we show that these networks
can handle such un-distrotions well. This makes it useful
for cameras that have complex or curved sensor planes.

3. Training Details
3.1. Training Procedure

We utilize a two-step training procedure for ORCa,
broadly aiming to begin with rapid surface estimation from
our mask network, called MaskNet, and subsequently learn-
ing diffuse and specular cues for simultaneous improved
complex surface and virtual sensor estimation. We uti-
lize 128 rays for training, 128 samples for the diffuse and
VolSDF network, and 64 samples for the environment Mip-
NeRF network. We begin each run with 2000 training iter-
ations using only MaskNet loss, with the aim of estimating
a convex hull of the 3D object to speed up convergence to-
wards accurate surface estimation. Then, we utilize all three
network losses, incorporating mask, diffuse, and specular
network losses with the aim of both (1) recovering accurate
complex surface geometry features, and (2) forming accu-
rate virtual sensors from the object surface to estimate 5D
environment radiance.



Figure 4. Effect of Pixel Resolution On Virtual Viewpoints. We cast a real cone (grey) from each pixel (dark green) with decreasing radii
(indicating a higher resolution) in different directions. The cone, parametrized by 3 rays intersects the circle and we compute the surface
normals (yellow) and reflected rays (light green). We find the closest intersection point between the reflected rays by solving least-squares
and denote that as the virtual viewpoint (magenta). As we decrease the real cone radii, the virtual pixel surface area, dsj also decreases
and the reflected rays are closer together pointing in similar directions. As dsj → 0 the virtual viewpoint starts to form a catacaustic of a
circle- which denotes the true loci of virtual viewpoints of the object-as-camera.

We constrain the near and far ray sampling for both the
object surface and environment radiance estimation to val-
ues specific to the given dataset for faster convergence; this,
however, does not have to be known prior to training and
only serves to speed up accurate estimation. We train for ap-
proximately 400k iterations, using a learning rate of 5.0e-5
and an exponential learning rate decay.

3.2. Network Details & Hyperparameters

Our model is implemented in PyTorch [7] and trained
using the Adam optimizer [5]. As in PANDORA [3], we
parameterize fS with an 8-layer MLP to estimate the sur-
face, and, as in Mip-NeRF [1], fd with 4-layer MLP with
input geometric features of size 512 from fS . We follow
the sdf-to-opacity conversion and the iterative sampling of
the ray, as proposed in [10]. The VolSDF network, which
is used for estimating the geometry of the glossy object, is
trained with an initial learning rate of 1 × 10−6. The Mip-
NeRF network, which is used to estimate the environment
map surrounding the glossy object, is trained with an initial
learning rate of 5 × 10−5. Both networks are trained with
exponential learning rate decay and a decay rate of 0.1. We
initially train the VolSDF network for 3,000 iterations, with
only the MaskNet loss being enforced for the first 1,000
iterations. After 3,000 iterations, we jointly train both net-
works together until they have converged on accurate object
geometry and environment maps.

We set the following near/far values for each dataset. For
datasets in the living room scene rendered with Mitsuba2,
we use a near/far of 0.2/0.6. For datasets in the pokemon
scene rendered with Mitsuba2, we use a near/far of 1.25/2.5.
For real-world datasets, we use a near/far of 0/6.

Figure 5. Comparisons on Orca in the living room dataset.
We compare a sample test viewpoint against existing
techniques that only capture an environment map.

3.3. Losses

Our method is trained end-to-end on multi-view images
of the object and jointly estimates object geometry, diffuse
radiance, and the 5D environment radiance field. The final
loss is as follows:



L = λeikonalLeikonal + λmaskLmask

+λnormalLnormal + λdistortLdistort

+

(
λcoarseLcoarse + λfineLfine

)
We use Leikonal as proposed in [10] with a weighting

of 0.1. Lcoarse is the L1 loss between the measured ra-
diance and the sum of the diffuse color and the coarse
specular color predicted by the environment radiance field.
Similarly, Lfine is the L1 loss between measured radiance
and the sum of diffuse and fine specular radiance. We set
λcoarse = 0.1 and λspec = 1.0. To smooth out the nor-
mals for complex geometry, we also used the normal loss
Lnormal proposed in [9], λnormal = 1.0. We also experi-
mented with the distortion loss to avoid floaters in the scene
similar to [2], however, we noticed little difference as a re-
sult of it.

3.4. Volumetric Masking

We utilize binary object masks to learn a 3D mask of the
target object to allow for faster convergence and surface es-
timation. Similar to previous works [3], we estimate this
3D mask to enable a faster convergence with object geom-
etry. We utilize a coordinate-based MLP for this 3D mask
estimation, which we refer to as MaskNet, and train the net-
work using 2D binary object masks corresponding to the
multi-view image inputs. This 3D mask represents the ob-
ject’s 3D convex hull and thus does not represent the con-
cave features of the target object; these concave features and
other complex geometry facets are learned in subsequent
training stages using diffuse and specular networks. How-
ever, we note that this 3D mask is not required for learning
surface curvature and geometry and only serves to improve
the speed at a coarse geometry is estimated.

4. Analysis
4.1. Roughness

We also capture the environment radiance field on a
globe with high roughness and show the specular and dif-
fuse radiance, depth from the object’s surface to its sur-
roundings in addition to a virtual view. We note that even
for rougher objects our framework can recover an environ-
ment radiance field. However, the recovered radiance field
is blurry due to the roughness acting like a low pass fil-
ter that removes the high-frequency components such as
the cushion on the sofa or blurs the textures on the ceil-
ing. The recovered radiance field, associated virtual views
and the depth from the object surface are therefore blur-
rier and coarse respectively. For example, we are able to
recover coarse depth in Fig. 7, however, the depth-from-
object-surface is smoother at the ceiling with the globe with

Figure 6. Effect of adding roughness. We show that our method
is still able to recover the environment radiance field from rougher
objects. Rougher objects act like a low pass filter that blurs the
environment radiance visible to the real camera therefore the re-
coverable specular radiance and virtual views are blurry lacking
the high-frequency details such as the cushion on the sofa. The
recovered depth is coarse with rougher objects.

low roughness. In future work, we can also expand our
cone formulation to include a roughness parameter, simi-
lar to RefNeRF [9], that can change the radius and apex of
the virtual cone to account for rougher objects.

4.2. Object size as virtual baseline

As Figure 3 shows, the virtual baseline for convex ob-
jects will lie inside the object’s surface or near the object’s
surface for concave objects. This means that the virtual
baselines are much smaller and limited by object geometry-
as the object size decreases, the virtual cones’ apex will be
close to each other, and the multi-view virtual baseline will
tend to 0, effectively acting as a monocular setup. This also
means that associated radiance field and depth maps will
also be more coarse for small objects.



Figure 7. Effect of Baseline on Depth. We show that with a larger
baseline, we get more accurate depth to the surroundings. This
is because the virtual baseline is dependent on object geometry
and for smaller objects. Similar to multi-view setups, we get less
accurate depth with a smaller baseline.

Figure 8. Dataset Information: We provide information about
the simulated datasets used using sample images and camera dis-
tributions. We test complex geometries that have inter-reflections
and test complex scenes as well in simulation.

Diffuse Radiance Specular Radiance Mixed Radiance Normals
Scene Approach PSNR SSIM PSNR SSIM PSNR SSIM MAE

↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (◦)
Ref-NeRF 17.59 0.7217 14.88 0.4750 19.58 0.7956 62.45

D1 PANDORA 13.23 0.4759 15.12 0.5231 12.87 0.4607 2.387
ORCA 13.29 0.4683 16.64 0.5148 18.23 0.5745 1.873
Ref-NeRF 11.86 0.6090 15.28 0.7059 21.80 0.8643 33.92

D2 PANDORA 22.53 0.8689 17.76 0.6326 22.73 0.7787 3.693
ORCA 23.47 0.8954 18.98 0.6954 22.31 0.8107 3.568
Ref-NeRF 25.95 0.8977 21.37 0.7281 24.07 0.8502 40.369

D3 PANDORA 21.90 0.8536 17.87 0.6522 21.31 0.7746 11.680
ORCA 22.98 0.9158 20.45 0.7216 22.74 0.8073 3.863
Ref-NeRF 24.33 0.8454 16.34 0.6578 17.75 0.7826 52.127

D4 PANDORA 16.10 0.6352 13.55 0.5626 16.92 0.7393 13.757
ORCA 17.63 0.8274 22.40 0.8153 23.00 0.8422 3.234
Ref-NeRF 20.97 0.8876 19.25 0.9279 24.72 0.9694 15.203

D5 PANDORA 14.90 0.8452 15.22 0.8715 17.99 0.9202 5.376
ORCA 18.66 0.8894 21.28 0.9392 21.47 0.9470 0.973
Ref-NeRF 12.08 0.4211 14.80 0.4850 13.21 0.4719 58.071

D6 PANDORA 20.85 0.6769 17.97 0.6479 21.57 0.6970 8.747
ORCA 23.03 0.7396 24.66 0.8346 24.25 0.7862 0.521
Ref-NeRF 18.80 0.7304 16.99 0.6633 20.19 0.7890 43.690

Average PANDORA 18.25 0.7260 16.25 0.6483 18.90 0.7284 7.606
(D1 - D6) ORCA 19.84 0.7893 20.74 0.7535 22.00 0.7947 2.339

Table 1. Metrics for more rendered scenes. (D1,D2 in paper)

5. Additional Comparisons

5.1. Quantitative Simulated Comparisons

In Fig. 8, we show an example of the input RGB im-
age for the six synthetic scenes along with the camera view

(a) Inserting Virtual Specular Objects

(b) Changing Appearance from Glossy to Metallic

Figure 9. ORCa applications: Using the learned environment
field, we can insert shiny virtual objects with realistic view and
position dependent reflections (a). From the learned geometry and
environment field, we can render the object under novel appear-
ances such as metallic appearance (b). Please refer to the supple-
mentary video for multi-view renderings.

distribution used. Here ‘forward facing‘ refers to concen-
trating the views over one-quarter of the hemisphere. The
scenes have variety in the geometry, surrounding environ-
ment and view distribution. The datasets would be released
upon publication. In Table 1, we show the individual met-
rics obtained on each of the scenes along with the average
values reported in the main text.

6. Additional Applications

The estimated geometry, diffuse-specular separation,
and environment radiance field can be rendered under novel
configurations to enable augmented reality applications
(Fig. 9). We add a synthetic shiny sphere of known geom-
etry to the scene by querying the learned environment radi-
ance field at the rays reflected by the sphere. Modeling the
environment as 5D radiance enables realistic reflections on
the sphere as it translates across the scene (Fig. 9(a)). ORCa
can separate the specular radiance of the object. This specu-
lar radiance is the environment radiance field multiplied by
the Fresnel reflectance of typical glossy surfaces. We can
convert the object’s appearance from glossy to metallic by
setting the fresnel reflectance to 1 (Fig. 9(b)). ORCa can ac-
curately model how the object’s geometry distorts the near
and far environment.
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