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Overview. This Appendix provides important additional de-
tails about our proposed method TeSLA. In Appendix A, we
provide hyperparameters details for each test-time adaptation
experiment on the common image corruptions, synthetic-
to-real, and medical measurement shift datasets. In Ap-
pendix B, we provide additional quantitative results, in-
cluding class top-1 accuracies for the VisDA-C [10] and
Kather-16 [5] datasets and corruption-wise error rates on
the CIFAR-10-C/CIFAR-100-C [3], and ImageNet-C [3]
datasets. In addition, we also provide segmentation class-
wise mean Intersection over Union (mIoU) for the VisDA-S
dataset [10] and class average Dice score for different sites
of the target test domain on the spinal cord [11] and prostate
dataset [7] for the competing test time adaptation methods.
All quantitative results are included for both one-pass (O)
and multi-pass (M) protocols. Appendix C provides an over-
all runtime computation cost of TeSLA along with other Test
Time adaptation methods on VisDA-C [10] dataset, while
Appendix D discusses TeSLA’s equivalence to TENT [14]
and [6] without mean teacher and adversarial augmentations.
We include additional ablation experiments and hyperpa-
rameter sensitivity tests in Appendix E. Finally, we provide
other qualitative results, including a sanity check on TeSLA’s
adversarial augmentations, uncertainty evaluation, and seg-
mentation visualization in Appendix F.

A. Hyperparameter Settings

Table A.1 and Table A.2 present the hyperparameters’
values of TeSLA used for individual experiments on dif-
ferent classification and segmentation datasets, respectively.
These hyperparameters include the batch size B, learning
rate, optimizer, EMA momentum coefficient α, number of
epochs for test-time adaptation (M protocol), the number
of weak augmentations |ρw|; the number of nearest neigh-
bors n; class-wise queue size NQ used by soft pseudo-label
refinement (PLR) module, number of image operations for
augmentation sub-policy N used by the adversarial augmen-
tation module, the augmentation severity controller coeffi-
cient λ1 and the knowledge distillation coefficient λ2 for Lkd

loss term.

Table A.1. Hyperparameter setting used for the proposed methods
TeSLA/TeSLA-s on different classification datasets.

Hyperparameters
CIFAR10-C CIFAR100-C ImageNet-C VisDA-C Kather-16

O M O M O M O M O M

Batch size B 128 128 128 128 128 128 128 128 32 32

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005

Optimizer Adam Adam Adam Adam SGD SGD SGD SGD Adam Adam

Momentum
coefficient α 0.99 0.999 0.99 0.999 0.9 0.996 0.9 0.996 0.9 0.96

Number of
epochs 1 70 1 70 1 5 1 5 1 70

Number of weak
augmented views |ρw|

5 5 5 5 5 5 5 5 5 5

Number of nearest
neighbors n 1 4 1 1 1 1 10 10 8 8

Class-wise
queue size NQ

1 256 1 1 1 1 256 256 32 256

Sub-policy
dimension N

2 2 2 2 2 2 4 3 2 2

Augmentation severity
controller λ1

1 1 1 1 1 1 1 1 1 1

Knowledge
distillation weight λ2

1 1 1 1 1 1 1 1 1 1

B. Additional Quantitative Results
In Table B.1, we compare TeSLA against state-of-the-art

test-time adaptation methods for the classification task on
the Kather-16 dataset. We present the class top-1 accuracies
(%) for each of the four tissue categories of tumor, stroma,
lymphocyte, and mucosa. In addition, we report the class
average accuracy (Avg.).

Furthermore, in Table B.2, we present the corruption-
wise average class error rates for different competing test
time adaptation baselines, including the proposed TesLA and
TeSLA-s on the CIFAR10-C, CIFAR100-C and ImageNet-C.
We use the following image corruptions for the evaluation
at the maximum severity level of 5: [GAUSSIAN NOISE, SHOT

NOISE, IMPULSE NOISE, DEFOCUS BLUR, GLASS BLUR, MOTION

BLUR, ZOOM BLUR, SNOW, FROST, FOG, BRIGHTNESS, CONTRAST,
ELASTIC TRANSFORMATION, PIXELATE, JPEG COMPRESSION].
We also use the ResNet-50 backbone for all experiments.

In Table B.3, we include the overall and class-wise ac-
curacies for test time adaptation of ResNet-101 trained on
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Table A.2. Hyperparameter setting used for the proposed method
TeSLA on different segmentation datasets.

Hyperparameters
VisDA-S Spinal Cord Prostate

O M O M O M

Batch size B 8 8 16 16 16 16

Learning rate 0.001 0.001 0.0002 0.0002 0.0002 0.0002

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Momentum
coefficient α 0.996 0.999 0.996 0.996 0.996 0.996

Number of
epochs 1 3 1 5 1 3

Number of weak
augmented views |ρw|

3 3 5 5 5 5

Number of nearest
neighbors n 1 1 1 1 1 1

Class-wise
queue size NQ

1 1 1 1 1 1

Sub-policy
dimension N

3 3 3 3 3 3

Augmentation severity
controller λ1

1 1 1 1 1 1

Knowledge
distillation weight λ2

1 1 1 1 1 1

synthetic vehicle images (training) and tested on the photo-
realistic vehicle images (validation) of the VisDA-C dataset.
The photo-realistic images are classified into 12 categories:
plane, bicycle, bus, car, horse, knife, motor-cycle, person,
plant, skate-board, train, and truck.

In Table B.4, we present segmentation results (class Avg.
volume-wise mean %Dice score) for test-time adaptation
baselines on two multi-site magnetic resonance imaging
(MRI) benchmarks - spinal cord [11] and prostate dataset [7].
For the spinal cord dataset, we report results for test-time
adaptation of the U-Net segmentation model trained on site
1 to site 2, site 3, and site 4. Similarly, we report results of
the U-Net segmentation model trained on the sites A and B,
which are adapted on the sites D, site E, and site F.

Table B.5 presents the results of competing test-time adap-
tation methods applied to the segmentation adaptation task
from the synthetic images of GTA [12] to the photo-realistic
images of Cityscapes [2] dataset. We report the class-wise
mean Intersection over Union (mIoU) over 19 classes: road,
side-walk, building, wall, fence, pole, light, sign, vegeta-
tion, terrain, sky, person, rider, car, truck, bus, train,
motor-cycle, and bicycle.

C. Runtime Analysis

We compare the computational runtime cost of several
test-time adaptation methods, including BN [4, 8], TTAC
[13], SHOT-IM [6], TENT [14], AdaContrast [1] and our pro-
posed method TeSLA in Table C.1. We also include overall
TesLA runtimes using static, pre-optimized RandAugment
(RA) / AutoAugment (AA) augmentation policies instead of
the proposed Adversarial Augmentations.

Table B.1. Comparison of state-of-the-art TTA methods under
different protocols on the Kather-16 dataset. We report the class
top-1 accuracies (%) for each of the four classes and the per-class
average accuracy (Avg.). Each result is averaged over ten seeds.

Method

Pr
ot

oc
ol

tumor stroma lymphocyte mucosa Avg.

Source N 84.5±4.0 91.6±3.0 0.9±1.2 95.0±1.3 68.0±1.3

BN N-O 89.3±2.5 85.5±2.6 61.7±2.2 90.2±0.6 81.7±1.0

Tent N-O 89.8±4.0 89.3±3.4 67.2±2.2 88.9±1.0 83.8±1.8

SHOT N-O 84.7±5.7 95.7±2.0 67.9±3.9 92.8±0.8 85.3±2.5

TTT++ Y-O 82.8±8.5 85.1±7.6 73.7±3.8 91.4±1.7 83.3±2.7

TTAC Y-O 92.6±2.6 96.6±1.9 78.3±4.3 93.9±1.0 90.4±1.1

TeSLA N-O 93.5±1.8 98.2±1.2 77.3±4.1 94.3±0.7 90.8±1.1

TeSLA-s Y-O 90.7±4.6 98.0±1.0 77.9±5.6 94.0±1.7 90.1±1.4

BN N-M 86.3±3.6 86.1±1.9 66.9±1.2 87.7±0.7 81.8±1.0

Tent N-M 96.4±4.2 99.5±0.4 62.6±9.0 93.7±1.5 88.0±3.3

SHOT N-M 84.6±4.4 98.5±0.6 77.1±5.2 91.7±0.8 88.0±2.4

TTT++ Y-M 95.6±1.4 93.9±2.8 85.2±5.3 93.6±1.8 92.1±2.0

TTAC Y-M 92.9±12.6 98.1±1.1 92.4±4.7 94.4±1.8 94.5±4.7

TeSLA N-M 97.1±1.0 99.6±0.3 94.4±2.0 95.6±0.9 96.7±0.5

TeSLA-s Y-M 97.4±0.4 99.5±0.3 95.1±2.0 95.7±1.0 96.9±0.6

Table C.1. Runtime (GPU hours) per epoch on GeForce RTX-3090
for ResNet-101 with batch size of 128 on the VisDA-C. RA implies
RandAugment [10], AA implies AutoAugment [9].

BN TTAC SHOT-IM TENT AdaContrast TeSLA TeSLA (RA) TeSLA (AA)

0.04 0.14 0.16 0.05 0.22 0.38 0.27 0.28

D. Equivalence to other Test-Time Objectives
Our proposed flipped cross-entropy loss f-CE of Eq. 1

(main paper) without soft-pseudo labels from the teacher
is equivalent to entropy minimization of TENT [14], while
our final objective LTeSLA of Eq. 14 (main paper) without
the knowledge distillation from adversarial augmentation
is equivalent to SHOT-IM [6] as DKL

(
Y ∥ Ŷ | X

)
= 0

when the teacher network is an instant update of the student
(momentum α is 0). Thus, without the mean-teacher and
adversarial augmentation, our method would have similar
shortcomings as that of TENT and SHOT. Incorporating the
soft-pseudo labels from the mean teacher alone improves
TeSLA’s accuracy on VisDA-C from 82.0% to 86.5%.

E. Sensitivity Tests and Aditional Ablations
E.1. Sensitivity Tests

Automatic Adversarial Augmentation. We additionally
provide the sensitivity test results for the hyperparameters of
the automatic adversarial augmentation module (λ1 and sub-
policy dimension N ) on the VisDA-C and VisDA-S datasets.
In Fig. E.1, we show how the class average (Avg.) accu-
racy (%) varies with the hyperparameter λ1 controlling the
severity of augmentations and the sub-policy dimension N



Table B.2. Comparison of state-of-the-art TTA methods under different protocols on common image corruptions datasets, including
CIFAR10-C, CIFAR100-C, and ImageNet-C. We report the error rates (%) on 15 test images’ corruptions.

Method Pr
ot

oc
ol

Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg Avg.

CIFAR10-C

Source N 48.7 44.0 57.0 11.8 50.8 23.4 10.8 21.9 28.2 29.4 7.0 13.3 23.4 47.9 19.5 29.1

BN N-O 18.2 17.2 28.1 9.8 26.6 14.2 8.0 15.5 13.8 20.2 7.9 8.3 19.3 13.3 13.8 15.6
Tent N-O 16.0 14.8 24.5 9.2 23.8 13.1 7.7 14.9 13.0 16.5 8.2 8.3 17.9 10.9 13.3 14.1

SHOT N-O 16.5 15.3 23.6 9.0 23.4 12.7 7.5 14.0 12.4 16.1 7.5 8.0 17.4 12.5 13.1 13.9

TTT++ Y-O 18.0 17.1 30.8 10.4 29.9 13.0 9.9 14.8 14.1 15.8 7.0 7.8 19.3 12.7 16.4 15.8
TTAC Y-O 17.9 15.8 22.5 8.5 23.5 11.2 7.6 11.9 12.9 13.3 6.9 7.6 17.3 12.3 12.6 13.4

TeSLA N-O 13.3 12.5 20.8 8.8 21.1 11.8 7.3 12.6 11.2 15.6 7.6 7.6 16.2 9.7 11.6 12.5
TeSLA-s Y-O 13.0 12.2 20.3 8.5 20.8 11.2 7.2 12.0 11.0 15.5 7.3 7.2 15.6 9.1 11.3 12.1

BN N-M 17.3 16.2 28.0 9.8 26.1 14.0 7.9 16.1 13.7 20.4 8.3 8.3 19.6 11.8 14.0 15.4
Tent N-M 15.1 13.7 22.2 8.5 22.4 11.8 7.1 12.7 11.9 12.9 7.6 7.6 16.9 9.8 12.6 12.9

SHOT N-M 15.8 14.8 24.9 9.2 23.6 13.2 7.5 14.5 12.8 17.5 8.1 8.2 18.1 10.8 13.4 14.2

TTT++ Y-M 13.2 11.8 11.1 7.9 16.5 8.9 6.6 9.5 9.7 8.6 5.2 5.6 13.1 8.8 11.1 9.8
TTAC Y-M 11.6 10.3 15.8 6.8 15.9 7.5 5.8 8.7 9.0 8.5 5.6 5.7 12.7 8.0 9.7 9.4

TeSLA N-M 10.7 9.8 15.2 7.0 15.8 9.1 6.1 10.0 8.9 10.9 6.0 6.2 13.0 7.9 9.6 9.7
TeSLA-s Y-M 10.4 9.8 14.9 7.3 16.1 9.0 6.2 9.5 9.1 11.5 5.9 5.8 12.9 7.9 9.5 9.7

CIFAR100-C

Source N 80.8 77.8 87.8 39.6 82.3 54.2 38.4 54.6 60.2 68.1 28.9 50.9 59.5 72.3 50.0 60.4

BN N-O 48.2 46.4 61.1 33.8 58.2 41.4 31.9 46.1 42.5 54.7 31.3 33.3 48.4 39.0 39.6 43.7
Tent N-O 43.3 41.2 52.7 31.2 50.8 36.1 29.3 41.9 38.9 43.6 30.1 31.0 43.5 34.4 36.5 39.0

SHOT N-O 44.1 41.8 53.3 31.5 50.6 36.0 29.6 40.7 40.1 41.9 29.5 33.6 44.0 34.9 36.6 39.2

TTT++ Y-O 50.2 47.7 66.1 35.8 61.0 38.7 35.0 44.6 43.8 48.6 28.8 30.8 49.9 39.2 45.5 44.4
TTAC Y-O 47.7 45.7 58.1 32.5 55.3 36.6 31.2 40.3 40.8 44.7 30.0 39.9 47.1 37.8 38.3 41.7

TeSLA N-O 40.0 38.9 51.5 32.2 49.1 36.9 29.7 40.4 37.4 46.0 29.3 30.7 42.7 32.9 34.6 38.2
TeSLA-s Y-O 39.1 38.5 50.0 30.6 48.6 35.9 29.1 38.9 36.4 46.2 28.3 29.7 41.9 32.1 33.9 37.3

BN N-M 47.4 45.5 60.0 33.9 56.9 40.8 31.8 46.4 42.6 54.2 32.3 33.1 48.5 37.2 39.4 43.3
Tent N-M 41.0 38.4 49.2 30.0 47.4 33.1 28.1 38.1 38.0 37.5 28.3 29.0 41.1 32.8 35.6 36.5

SHOT N-M 41.6 40.6 51.7 31.4 49.5 36.2 29.3 42.4 38.4 45.4 29.9 31.3 43.1 33.5 36.0 38.7

TTT++ N-M 38.4 37.7 41.3 29.1 44.1 32.9 27.8 34.3 34.4 34.7 25.4 26.6 39.2 32.3 33.6 34.1
TTAC N-M 37.8 36.8 45.1 28.2 45.3 30.7 26.6 35.3 35.7 36.7 26.8 27.4 39.6 30.6 34.2 33.6

TeSLA N-M 34.4 33.5 42.2 28.0 41.9 32.1 25.9 35.1 32.6 38.3 25.0 27.4 37.5 28.6 30.6 32.9
TeSLA-s Y-M 33.9 33.0 42.1 27.5 42.0 31.6 26.1 34.2 32.2 39.4 24.8 26.3 36.8 28.1 30.3 32.6

ImageNet-C

Source N 97.0 96.3 97.4 82.1 90.3 85.3 77.5 83.4 76.9 76.0 40.9 94.6 83.5 79.1 67.4 81.8

BN N-O 83.5 82.6 82.9 84.4 84.2 73.1 60.5 65.1 66.3 51.5 34.0 82.6 55.3 50.3 58.7 67.7
Tent N-O 70.8 68.7 69.1 72.5 73.3 59.3 50.8 53.0 59.1 42.7 32.6 74.5 45.5 41.6 47.8 57.4

SHOT N-O 77.0 74.6 76.4 81.2 79.3 72.5 61.7 65.7 66.3 55.6 56.0 92.7 57.1 56.3 58.2 68.7

TTAC Y-O 71.5 67.7 70.3 81.2 77.3 64 54.4 51.1 56.9 45.4 32.6 79.1 46.0 43.7 48.6 59.3
TTT++ Y-O 69.4 66 69.7 84.2 81.7 65.2 53.2 49.3 56.2 44.4 32.8 75.7 43.9 41.6 46.9 58.7

TeSLA N-O 65.0 62.9 63.5 69.4 69.2 55.4 49.5 49.1 56.6 41.8 33.7 77.9 43.3 40.4 46.6 55.0
TeSLA-s Y-O 61.4 58.8 60.3 67.3 66.2 54.0 48.2 46.9 53.1 40.9 32.4 81.2 41.1 39.2 44.8 53.1

BN N-M 83.4 82.6 82.8 84.4 84.2 73.2 60.3 64.9 66.4 51.2 34.0 82.6 54.9 49.9 58.8 67.6
Tent N-M 66.1 63.7 64.2 68.9 69.6 52.6 47.4 48.4 58.4 39.8 31.6 77.9 41.7 28.7 44.5 54.2

SHOT N-M 75.8 73.7 73.7 78.3 77.1 71.8 60.9 64.2 66.1 55.4 59.8 95.5 56.1 57.3 58.1 68.2

TeSLA N-M 62.3 60.9 60.6 64.3 65.7 50.4 46.2 46.1 54.7 39.1 32.2 68.5 40.9 37.5 43.5 51.5



Table B.3. Comparison of state-of-the-art TTA methods under different protocols on the VisDA-C dataset. We report the class top-1
accuracies (%) for each of the 12 classes. We also report the overall accuracy (Acc.) and the per-class average accuracy (Avg.). Each result
is averaged over three seeds.

Method

Pr
ot

oc
ol

plane bicycle bus car horse knife mcycl person plant sktbrd train truck Acc. Avg.

Source N 3.8±4.5 23.3±0.7 56.0±3.9 82.5±0.9 70.8±3.1 1.6±0.3 84.4±1.3 9.1±2.2 78.0±5.4 22.1±3.7 79.3±2.4 1.6±0.7 55.6±0.7 48.5±1.0

BN N-O 86.9±2.2 57.8±2.3 75.4±1.2 52.9±1.3 86.7±0.6 54.2±4.0 85.5±0.9 55.4±2.0 64.9±2.7 41.6±2.3 85.7±1.2 28.8±2.5 64.5±0.3 64.6±0.5

Tent N-O 86.9±2.2 57.7±3.0 77.4±1.4 56.8±1.5 87.3±0.8 62.4±3.8 86.6±0.8 62.9±2.9 71.2±1.7 39.9±2.8 84.8±1.2 24.7±3.4 66.3±0.3 66.5±0.6

SHOT N-O 90.5±1.0 77.0±0.9 76.2±0.7 47.5±0.5 87.9±0.2 62.1±4.0 75.9±0.2 74.4±1.1 83.3±0.3 47.0±6.6 84.2±0.9 41.6±0.4 68.6±0.6 70.6±1.0

AdaContrast N-O 95.2±0.3 78.2±0.3 81.8±0.1 67.9±1.2 94.9±0.5 87.4±3.3 87.9±0.6 82.0±1.5 90.7±0.7 36.8±16.1 88.6±0.1 31.5±3.6 76.2±0.7 76.9±1.4

TTT++ Y-O 86.4±1.5 60.5±2.6 75.7±2.2 51.7±3.6 86.5±0.9 55.3±2.1 85.2±2.7 55.8±1.1 64.5±2.7 41.3±2.1 86.4±1.9 28.4±2.6 64.4±0.8 64.8±0.7

TTAC Y-O 90.0±1.2 64.7±12.5 69.7±0.9 48.5±1.7 84.3±1.8 82.8±3.6 84.7±4.1 64.7±7.2 72.1±1.3 40.2±6.3 86.5±1.2 25.5±5.6 65.5±1.6 67.8±2.1

TeSLA N-O 95.4±0.2 87.4±0.2 83.8±0.6 70.1±0.8 95.1±0.1 90.0±1.0 84.8±3.1 83.2±1.3 93.6±0.1 67.9±19.9 85.4±0.8 49.3±1.2 80.3±1.3 82.2±1.9

TeSLA-s Y-O 92.0±0.2 81.2±2.0 77.1±1.9 56.5±0.9 90.2±0.4 91.0±0.9 82.9±1.8 79.8±0.8 91.3±0.1 48.9±3.5 81.2±1.5 40.1±2.4 73.5±0.3 76.0±0.3

BN N-M 87.2±1.4 58.0±1.1 76.4±1.4 53.7±1.9 87.2±1.3 54.2±3.6 86.2±0.3 55.5±1.6 64.9±2.3 42.1±2.7 85.6±1.3 29.3±2.2 64.9±0.1 65.0±0.4

Tent N-M 89.1±2.0 56.4±5.9 82.4±1.0 69.2±0.5 89.3±1.3 95.2±0.5 91.4±0.5 79.5±1.0 86.1±0.3 16.3±1.9 84.7±0.4 8.4±3.5 70.9±0.4 70.7±0.6

SHOT N-M 93.9±0.5 82.6±0.7 76.6±0.8 49.7±1.8 92.0±0.2 79.0±21.6 75.3±2.0 80.9±2.4 89.5±0.6 50.5±19.0 83.8±0.9 52.2±1.1 72.7±1.8 75.5±3.4

AdaContrast N-M 95.6±0.6 82.8±1.0 76.5±2.4 72.4±5.3 96.7±0.3 91.3±2.2 88.6±1.2 85.4±0.8 95.3±0.5 30.1±51.3 93.6±0.7 48.9±2.1 79.7±1.3 79.8±3.9

TTT++ Y-M 87.2±2.0 61.8±2.0 74.7±1.3 52.7±3.6 86.1±1.7 65.0±7.0 84.9±2.3 62.1±6.0 67.2±1.6 36.6±1.3 86.2±0.1 27.1±3.6 65.3±0.3 65.9±1.0

TTAC Y-M 86.8±4.2 73.5±1.3 69.3±2.1 44.2±2.5 78.8±5.1 73.1±6.7 84.7±1.6 67.3±8.6 78.6±5.6 52.9±4.1 84.7±2.6 33.2±3.9 66.0±2.0 68.9±2.4

TeSLA N-M 96.6±0.2 91.3±0.1 85.1±1.0 69.3±0.0 96.7±0.3 97.1±0.8 88.0±0.9 85.2±0.4 96.3±0.2 87.7±9.3 87.4±0.2 57.3±0.8 83.4±0.6 86.5±0.9

TeSLA-s Y-M 96.1±0.4 89.4±0.4 83.0±0.4 62.4±0.5 94.4±0.1 94.5±1.1 87.3±0.3 83.3±0.5 95.5±0.2 63.9±14.9 85.7±0.7 49.4±3.3 79.3±1.0 82.1±1.5

Table B.4. Segmentation results for test-time adaptation methods (class Avg. volume-wise mean Dice score in %) on the spinal cord dataset
(site {1} → 2,3,4) and prostate dataset (sites {A,B} → D,E,F), respectively.

Method Protocol Spinal Cord Prostate

Sites {1} → {2} {1} → {3} {1} → {4} {1} → {2,3,4} {A,B} → {D} {A,B} → {E} {A,B} → {F} {A,B} → {D,E,F}
Class Avg. Class Avg. Class Avg. Avg. Class Avg. Class Avg. Class Avg. Avg.

Source N 77.4±6.6 64.8±11.7 85.9±3.8 76.0 ±11.8 75.8±8.9 65.9±18.5 38.4±32.3 60.5±27.0

BN N-O 85.2±2.1 70.6±3.6 88.9±1.7 81.6±8.3 75.9±9.4 74.4±7.4 65.7±22.4 72.1±15.2

TENT N-O 85.7±1.8 68.7±2.8 88.9±1.7 81.1±9.1 78.8±6.2 77.9±6.9 67.0±28.4 74.7±17.9

PL N-O 85.3±2.1 71.0±3.6 88.9±1.7 81.7±8.6 76.1±9.4 74.8±7.5 66.2±22.4 72.4±15.2

OptTTA N-O 84.4±2.3 80.2±5.1 87.5±2.0 84.1±4.8 84.9±6.9 80.3±8.4 84.0±6.6 83.1±7.7

TeSLA N-O 86.3±1.5 80.3±7.3 89.3±1.4 85.3±5.8 86.1±3.3 79.8±7.5 84.3±6.3 83.5±6.5

BN N-M 85.5±1.6 78.5±3.2 88.8±1.5 84.3±4.8 77.8±9.6 77.3±7.2 63.8±26.7 73.1±18.0

TENT N-M 85.5±1.6 79.0±3.3 88.8±1.5 84.4±4.7 81.6±7.7 79.0±10.4 82.8±9.2 81.2±9.3

PL N-M 85.5±1.7 78.8±3.3 88.8±1.5 84.3±4.7 81.2±7.9 79.1±10.1 82.8±9.1 81.1±9.2

OptTTA N-M 84.3±2.5 80.7±4.9 87.7±2.0 84.3±4.4 86.2±5.2 78.6±8.6 85.0±6.7 83.4±7.7

TeSLA N-M 86.4±1.7 80.4±3.2 89.3±1.7 85.4±4.4 85.9±4.0 81.2±6.7 85.6±5.4 84.3±5.8

Table B.5. Segmentation results for test-time adaptation methods (mIoU%) for adaptation from synthetic GTA5 dataset to Cityscapes
dataset (O and M protocols).
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Source N 72.9 20.0 81.4 21.7 22.9 19.2 25.3 10.6 78.9 26.4 85.9 54.9 20.7 53.0 30.6 16.2 1.9 20.0 7.5 35.3

BN N-O 84.3 31.8 79.2 24.1 20.5 21.5 23.5 10.5 74.6 32.0 75.3 52.1 14.4 77.6 28.1 20.6 6.0 14.9 6.2 36.7
PL N-O 84.0 31.1 80.6 25.5 20.7 21.5 24.7 11.4 77.3 34.0 79.4 54.2 17.1 78.3 30.1 21.7 9.7 18.5 8.1 38.3

Tent N-O 88.0 34.3 80.7 27.7 17.8 19.3 22.1 10.0 80.1 40.5 77.6 51.8 15.7 81.8 32.6 24.0 8.9 18.8 5.8 38.8
CoTTA N-O 85.8 35.3 79.1 26.5 20.3 19.8 21.7 9.9 76.7 36.2 74.6 53.2 14.4 77.8 29.0 19.3 3.6 13.2 5.8 37.0
TeSLA N-O 90.4 52.2 82.5 29.6 25.5 28.1 32.5 29.7 79.7 39.0 75.2 59.0 21.3 84.0 29.3 24.6 14.5 23.0 26.1 44.5

BN N-M 84.3 31.1 80.7 25.4 21.0 22.6 25.6 11.8 76.7 32.7 77.6 54.8 17.2 79.7 29.7 21.7 9.3 18.7 8.5 38.4
PL N-M 85.1 30.6 80.9 25.7 20.6 21.5 24.7 11.3 77.9 33.9 80.2 54.4 17.4 80.0 30.0 21.9 9.2 19.0 8.3 38.6

Tent N-M 89.0 35.1 81.0 28.4 17.0 19.5 22.9 9.8 80.8 41.8 76.7 52.4 16.3 83.6 33.0 24.8 7.1 20.6 5.7 39.2
CoTTA N-M 88.6 40.2 80.6 30.0 20.4 19.2 25.9 16.0 77.1 32.7 75.3 55.7 23.1 82.8 30.1 19.4 9.8 19.9 11.3 39.9
TeSLA N-M 90.1 51.4 83.1 29.0 27.7 28.7 34.8 34.0 78.7 35.7 73.0 62.0 26.5 83.9 28.5 25.0 25.7 27.3 29.4 46.0
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Figure E.1. Sensitivity test for adversarial augmentation hyper-
parameters of TeSLA on the VisDA-C dataset for classification
task on various TTA protocols. We plot the class Avg. accuracy (%)
on the VisDA-C dataset for (a) augmentation severity controller
λ1 ∈ {0, 0.1, 1, 10} and (b) sub-policy dimension N ∈ [1, 5].
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Figure E.2. Sensitivity test for adversarial augmentation hy-
perparameters of TeSLA on the VisDA-S dataset for segmen-
tation task on various TTA protocols. We plot the mIoU (%)
on the VisDA-S dataset for (a) augmentation severity controller
λ1 ∈ {0, 0.1, 1, 10} and (b) sub-policy dimension N ∈ [1, 5], re-
spectively.

on the VisDA-C dataset. Similarly, Fig. E.2 shows the effect
of changing λ1 and N on the segmentation scores measured
by mIoU (%) on the VisDA-S dataset. We observe that the
performance of our method TeSLA is stable over a wide
range of λ1 and N for both classification and segmentation
tasks.

PLR hyperparameters. We present sensitivity tests for
the hyperparameters of the soft pseudo-label refinement
(PLR) module. In Fig. E.3, we show the test-time adap-
tation classification performance of TeSLA on the VisDA-
C (N-O) for varying numbers of nearest neighbors n ∈
{1, 4, 10, 32, 64, 128}, and class memory queue size NQ ∈
{16, 32, 64, 128, 256, 512, 1024}. TeSLA outperforms com-
peting baselines under a wide range of choices. Moreover,
the number of examples in the queue can be as small as
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Figure E.3. Sensitivity test for PLR hyperparameters: (a) the
number of nearest neighbors n and (b) the class memory queue size
NQ on the VisDA-C dataset. We report the overall accuracy (Acc.)
and the class average accuracy (Avg.) in % on the ViSDA-C under
the N-O protocol.
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Figure E.4. Sensitivity test on the number of weak augmentation
(|ρw|) for ensembling soft-pseudo labels for Soft-Pseudo Label
Refinement (PLR) on (a) CIFAR10-C and (b) CIFAR100-C datasets.
We report, for each case, the average error rate over 4 validation
corruptions.

less than 0.5% of the dataset size and still maintains on-par
performance.

Fig. E.4 shows the classification performance of TeSLA
on the CIFAR10-C and CIFAR100-C and various corrup-
tions [GAUSSIAN BLUR, SPATTER, SPECKLE NOISE, SATURATE]
under multiple protocols and the number of weak augmen-
tation for ensembling |ρw| ∈ {2, 3, 5, 9}. These plots show
that increasing the number of views decreases the average
error rate in both protocols. While we report the results with
|ρw| = 5 in the main, we observe we could further decrease
the error rate with |ρw| = 9. However, this choice would
multiply the computational cost by two as the number of for-
ward passes is linearly proportional to this hyperparameter.
For this reason, we opt |ρw| = 5, which gathers the benefit
of ensembling and reasonable computational cost.
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Figure E.5. Sensitivity test on the scalar coefficient λ2 of Lkd

term of the test time loss LTeSLA. We report, for each case, the
average error rate over the 4 validation corruptions.

Knowledge distillation coefficient. Finally, we report the
sensitivity test results for the knowledge distillation weight
λ2. In Fig. E.5, we show the classification adaptation per-
formance of TeSLA on the CIFAR10-C and CIFAR100-
C datasets is not very sensitive to the selection of λ2 ∈
{0.1, 1, 10}.

E.2. Ablations

EMA coefficient of teacher model. In Fig. E.6, we show
the effect of changing the EMA coefficient α used for up-
dating the teacher model from the student model for the
one-pass (O protocol) and multi-pass (M protocol) on the
CIFAR10-C and CIFAR100-C datasets. We observe that
for the multi-pass protocol (M), decreasing α leads to better
performance, while for the one-pass protocol (O), optimal
α depends on the number of test images observed in one
epoch. If α is large (close to 1.0), the teacher is updated
very slowly and thus requires more updates to reach better
performance. Therefore, for a one-pass online evaluation,
the accuracy decreases. On the other hand, if we set α to a
minimal value, it results in unstable convergence.

Batch size and learning rate. In Fig. E.7, we show the
effect of batch size and learning rate on the proposed method
TeSLA along with TENT [14], SHOT [6], and TTAC [13] on
CIFAR10-C for N-O protocol. We observe that increasing
batch size helps reduce test time error rates, and the model
performs best with the same batch size used during source
model training. Similarly, increasing the learning rate re-
duces the error rate until it becomes too large for unstable
gradient model updates.
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Figure E.6. Sensitivity test on the EMA coefficient of the teacher
model α on the (a) CIFAR10-C and (b) CIFAR100-C datasets. We
report the average error rate over four corruptions for each dataset.
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Figure E.7. Ablation study for the roles played by the (a) batch
size B and (b) the learning rate scale with respect to the default
value. We report, for each baseline, the average error rate (in %)
over four validation corruption sets of the CIFAR10-C under the
N-O protocol.

F. Additional Qualitative Results

F.1. Sanity Check for Adversarial Augmentation

To assess the adversarial effect of the proposed automatic
augmentations, we conduct a sanity check for the optimized
sub-policies. in particular, in Fig. F.1, we rank the sub-
policies optimized by our automatic augmentation module
on the VisDA-C for N-M protocol after one epoch by de-
creasing the order of sampling probability. Then, we eval-
uate the performance of the student model on the test-test
images from VisDA-C that are augmented using the above
sub-policies. We observe that reducing the hardness level
of sub-policies, the more the student model is accurate in
recognizing the images. This is supported by the Pearson
correlation of 0.7 between the sub-policy rank and the accu-
racy (p = 0.02), demonstrating our module’s capability to
optimize and sample adversarial examples.



Figure F.1. Adversarial augmentation sanity check. We report
the per-class average accuracy (%) of TeSLA’s student model on
the VisDA-C augmented by the ten most adversarial sub-policies
optimized by our automatic augmentation module.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Source (ECE=14.86)
SHOT (ECE=16.31)
TeSLA w/o kd (ECE=15.60)
TeSLA (ECE=7.60)
Expected

0
10
20
30
40
50
60
70
80
90
100

Nu
m

be
r o

f s
am

pl
es

 (%
)

Figure F.2. Calibration performance comparison of TeSLA (with
and without adversarial augmentations) against other baselines via
a reliability diagram on the VisDA-C dataset for N-O protocol.
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Figure F.3. Qualitative segmentation results of test-time adapta-
tion methods trained on site 1 and tested on site 3 of the spinal cord
dataset. From left to right: (a) Ground Truth, (b) Source Model, (c)
BN [8], (d) TENT [14], (e) PL, and (f) TeSLA, respectively.
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Figure F.4. Qualitative segmentation results of test-time adap-
tation method trained on site A and site B and tested on site F
of the prostate dataset. From left to right: (a) Ground Truth, (b)
Source Model, (c) BN [8], (d) TENT [14], (e) PL, and (f) TeSLA,
respectively.

F.2. Uncertainty Evaluation

We evaluate the model reliability on the ViSDA-C clas-
sification adaptation task (N-O protocol). In Fig. F.2, we
show the reliability diagram (dividing the probability range
[0, 1.0] into ten bins) and report the expected calibration
error (ECE) [9] for the Source model without adaptation,
SHOT [6], and TeSLA with and without adversarial augmen-
tations. The proposed TeSLA gives the lowest calibration
error with an 8.71% improvement over SHOT. It is interest-
ing to observe that the ECE of TeSLA without adversarial
augmentations is on-par with the SHOT method. The adver-
sarial augmentation module improves the TeSLA’s ECE by
8%, which shows the benefit of test-time adversarial aug-
mentation on the model’s reliability.

F.3. Qualitative Segmentation Results

In Fig. F.3 and Fig. F.4, we show the qualitative seg-
mentation results of TeSLA for test-time adaptation on
the spinal cord and prostate MRI datasets and compare
it with TENT [14], BN [8], and Pseudo Labeling (PL).
Compared to other baselines, TeSLA outputs more accu-
rate segmentation results closer to the provided ground
truth.
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