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1. MoCap Yoga Dataset (MoYo)

We capture a trained yoga professional in a MoCap stu-
dio with 54 Vicon Vantage V16 infrared cameras capable of
tracking body markers as small as 3mm in diameter. The Vi-
con system was synchronized with 8 RGB cameras recording
at 4112x3008 resolution and a Zebris FDM pressure mea-
surement mat. The pressure mat offers a sensor resolution
of 1.4sensors/cm2 and can capture pressure in 10-1200 kPa
range. Ground-truth SMPL-X [22] parameters are recovered
from the MoCap data using MoSh++ [17]. A total of 200
yoga sequences were recorded at 30fps. The yoga poses we
selected include all poses in the Yoga-82 dataset [25] as well
as their variations. The T-SNE [24] plot in Fig. S.1 shows
that the poses contained in MoYo are highly diverse and
cover areas in the space of human poses not well represented
in existing datasets [8, 17, 19, 21].

To compute a reference CoM, we use the commercially
available tool, Plug-in Gait (PiG) from Vicon. PiG requires
a-priori known anthropometric measurements (e.g. height,
weight, shoulder offset, knee width, etc) and computes: (1)
bone joints from a known marker topology, (2) per-bone
mass as a proportion of body mass, (3) per-bone CoM as a
proportion of each bone’s length, and (4) whole-body CoM
as a weighted average of per-bone CoMs. In contrast, our
pCoM does not require anthropometric measurements and
takes into account the full 3D body shape.

2. Method

2.1. Stability Loss

The suggested classic definition uses a binary stability
criterion, i.e., the CoM “just” projects either inside or outside
the BoS. This is discontinuous with sparse gradients.

Since CoP lies inside BoS, our L2 loss is a “soft” version
that approximates the classic definition, but has two key
benefits: (1) it is continuous and fully differentiable, and, (2)
it informs about the degree of instability. The distribution
of Lstability in Fig. S.2 for both AMASS and MoYo datasets
peak at ∼ 0, motivating using an L2 formulation.

Figure S.1. The distribution of poses in MoYo and existing MoCap
datasets are visualized after T-SNE dimension reduction.

Figure S.2. Distribution of Lstability in AMASS and MoYo. Both
peak at ∼ 0, motivating using an L2 formulation. Bottom right:
Unstable long-tail poses from AMASS.



Pose COM-naive COM-trig COM-part COS-naive COS-pressure

Pose

Figure S.3. Gravity-projections of different formulations of CoM (shown with pink) and CoP (shown with green) are shown with estimated
pressure maps. Our proposed pCoM captures more accurate body mass distribution because it takes into account part-specific mass
contributions. Similarly, our CoP leverages the pressure maps rather than binary contact.

2.2. Elements of Stability Analysis: Alternative for-
mulations

Computation of the “Center of Mass”, CoM, must be
efficient and differentiable. The CoM could be naively ap-
proximated as the mean vertex position of a mesh:

m̄naive =
1

NV

NV∑
i=1

vi. (S.1)

However, the SMPL and the SMPL-X body models have a
non-uniform vertex distribution across the surface. There
are a disproportionate number of vertices on the face and
hands compared to the body. For instance, roughly half of
SMPL-X’s vertices lie on the head. Consequently, m̄naive is
dominated by face and hand vertices.

A better formulation is the mean of uniformly sampled
surface points:

m̄u
naive =

1

NU

NU∑
i=1

vi. (S.2)

Another formulation computes the average of the mesh
triangle face centroids weighted by the face area:

m̄trig =
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i=1 Ai
, (S.3)

where Ai denotes the area and F̄i =
1
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+ v⊤i2 + v
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centroid of face F i. The problem with these approaches is
that they assume that mass, M , is proportional to surface
area, S, which is a poor approximation.

Our proposed pCoM formulation addresses this by (1)
uniformly sampling vertices on the SMPL mesh and (2)
taking part-specific mass contributions into account. Our
pCoM computes mass from volume, V , via the standard
density equation, M = ρV . Tab. S.1 compares the CoM
error across different formulations of CoM w.r.t. ground-
truth CoM obtained using Vicon PiG. pCoM significantly
outperforms all baselines. Figure S.3 shows an intuitive
qualitative comparison between all formulations of CoM.

m̄naive m̄u
naive m̄trig pCoM (m̄)

CoM error ↓ 264.1 mm 68.5 mm 70.0 mm 53.3 mm

Table S.1. Comparison of various CoM formulations.

Similarly, for “Center of Pressure” (CoP), a simple
heuristic used in previous works detects binary contact by
thresholding body vertices using their Euclidean distance
from the ground plane. However, such contact lacks in-
formation about the pressure distribution and assigns equal
weight to all contact vertices. Moreover, binary contact
is not differentiable and is therefore generally used at test-
time [4, 26, 29, 30] or for data preprocessing [5, 31], not
during training. In contrast, our CoP formulation is fully dif-
ferentiable and takes the inferred pressure distribution of the
body-floor contact into account. As shown in Fig. S.3, the
naive CoP suffers from equally weighting all binary-contact
whereas our CoP better represents the pressure profile of the
body-ground contact.



2.3. Ablation of ground losses

Figure S.4. Left: The gradient of Lpull decays gradually with
h(pi); vertices with h(pi) ≥ 20cm contribute minimally to back-
propagation. Right: Effect of Lpush and Lpull; high Lpush results in
inaccurate floor contact, high Lpull results in penetrations.

Instead of having a threshold to restrict Lpull only to ver-
tices close to the ground, we chose a soft version of the
loss to ensure full differentiability. However, as shown in
Fig. S.4 (left), the loss gradient decays with height and ver-
tices with h(vi) ≥ 15 cm contribute minimally during back-
propagation. Further, we study the impact of Lpush and Lpull
in Tab. S.2 and Fig. S.4-right. The terms complement each
other and are more effective when used jointly (Lground).

Method MPJPE ↓ PMPJPE ↓ PVE ↓
HMR∗ [12] 82.5 48.2 92.3
HMR∗ [12]+Lpush 85.4 49.0 96.6
HMR∗ [12]+Lpull 88.0 48.8 99.4
HMR∗ [12]+Lground 80.9 47.8 89.9

Table S.2. Ablation for Lpush and Lpull on the RICH [7] dataset.

3. Experiments
We integrate our intuitive-physics terms in both an

optimization- and a regression-based method for three rea-
sons: (1) the community heavily uses both method types,
(2) our terms generalize and benefit both types, despite their
differences, and (3) our terms also work with different body
models; SMPL-X (used by IPMAN-O) and SMPL (used by
IPMAN-R).

3.1. IPMAN Implementation Details

3.1.1 IPMAN-R.

Similarly to previous methods [9, 13, 14, 20], we take the
widely used HMR [12] architecture to analyze the effect of
adding our proposed IP terms. Note that, while HMR is not
the most recent method, it is widely used as a backbone.
As such, it provides a consistent foundation for evaluation
and comparison. Our goal here is to isolate and evaluate the
effect of adding intuitive physics. Such terms should then be
readily applicable to other HPS regression frameworks.

The HMR regressor estimates the camera translation
tc and SMPL parameters (pose, global orientation, and

shape) in the camera coordinates assuming Rc = I3 and
tb = 0. We initialize the HMR model using pretrained
weights provided by SPIN [14] and finetune both IPMAN-R
and HMR on the same datasets; namely RICH [7], Hu-
man3.6M [8], MPI-INF-3DHP [19], COCO [15], MPII [2]
and LSP [10, 11]. In the main paper, we call the baseline
as HMR∗ which uses the same training datasets and hyper-
parameters as IPMAN-R, albeit with the exception of the
proposed IP terms. We follow the same training schedule,
data augmentation and hyperparameters as SPIN [14] but
do not use in-the-loop optimization. We use the Adam op-
timizer with learning rate of 5e−5 and finetuning takes 3
epochs (∼ 8 hours) on a Nvidia Tesla V100 GPU.

We set the hyperparameters α = 100, γ = 10 for the
per-vertex pressure ρi, α1 = 1.0, α2 = 0.15 for the Lpull
term and β1 = 10.0, β2 = 0.15 for the Lpush term. The
loss weights are empirically determined to be λs = 0.01 and
λg = 0.01. We borrow the same configuration as [14] for all
remaining loss weights, namely λ2D, λ3D and λSMPL.

RICH [7] contains sequences with an uneven ground-
plane. For training IPMAN-R, we therefore sample a subset
of the RICH dataset where subjects mainly interact with an
even ground plane (see Tab. S.3). In the Train/Val sequences,
we use camera 0 for validation and cameras 1-5 for training.

Train/Val Test
’Pavallion 000 yoga2’ ‘Pavallion 002 yoga1’
’Pavallion 000 yoga1’ ‘Pavallion 013 yoga2’
’Pavallion 006 yoga1’ ‘ParkingLot2 014 pushup2’
’Pavallion 018 yoga1’ ‘ParkingLot1 005 pushup1’

Table S.3. Training, validation and test sequences in the RICH
dataset containing an even ground.

3.1.2 IPMAN-O.

For IPMAN-O, we extend the baseline optimization-based
method SMPLify-XMC [20]. We use the same configuration
as SMPLify-XMC and only add extra hyperparameters for
the proposed IP terms. Both methods are initialized with the
same presented pose from the MoYo dataset. We extract 2D
keypoints from images using MediaPipe [16].

Same as IPMAN-R, we set the hyperparameters α = 70,
γ = 10 for the per-vertex pressure ρi, α1 = 1.0, α2 = 0.15
for the Lpull term and β1 = 10.0, β2 = 0.15 for Lpush
term. The loss weights are empirically determined to be
λs = 10000 and λg = 10000.

3.2. Evaluation Metrics

3.2.1 BoS Error (BoSE) calculation.

Recall that the “Base of Support” (BoS) is defined by the
convex hull of the contact regions. Since computing this



can be computationally inefficient, we reformulate the BoSE
computation to test if projection of the CoM, g(m̄part), on
the ground plane can be represented as a convex combi-
nation of the gravity-projected contact vertices C. To this
end, we solve the linear equation system via standard linear
programming using interior point methods [1]:

mina ∥a⊤C − m̄part∥ (S.4)
s.t. ai ∈ a ≥ 0 (S.5)∑

ai = 1 (S.6)

where a⊤C = a1c1 + · · ·+ ancn for the points ci in C. If
the system has a solution, g(m̄) ∈ C(C) holds, otherwise
g(m̄) is not in the convex hull of C, i.e. g(m̄) /∈ C(C).

Figure S.5. Stability evaluation using the “Bullet” physics engine.
Meshes produced by the baseline method [20] (in orange) top-
ple but IPMAN-O’s meshes (in cyan) remain stable after physics
simulation.

3.3. Qualitative Results

Figures S.6 and S.7 show supplemental qualitative results
for IPMAN-R and IPMAN-O, respectively.

4. Stability Evaluation via Physics Simulation
Current physics engines are incompatible with HPS

methods, as they approximate SMPL bodies with rigid
convex hulls and are non-differentiable. However, us-
ing them for posthoc stability evaluation of the estimated
meshes is possible. Specifically, we evaluate IPMAN-O and
SMPLify-XMC [20] by first, using V-HACD convex decom-
position [18] of the estimated body meshes and then by simu-
lating physics as in [6,23] via the “Bullet” physics engine [3].
We measure the displacement of the human mesh after 100
physics simulation steps; a small displacement denotes a
stable pose and vice versa. IPMAN-O produces 14.8% more
stable bodies than the baseline [20]; see Fig. S.5.

5. Evaluation of Biomechanical Elements
We use the pressure field defined in Eqn. 2 of the main

paper to compute per-point pressure on the SMPL mesh.

With this, the pressure heatmap is estimated by summing the
per-point pressure projected to the ground-plane. Note that
we recover relative pressure as we do not assume availability
of ground-truth body mass or anthropometric measurements.

To measure the overlap of the inferred pressure heatmap
w.r.t. the ground-truth, we compute the intersection-over-
union (IOU) between the two. However, the ZEBRIS pres-
sure sensor captures pressure measurements in the range
10-1200 KPa. Depending upon the contact area and the
weight of the subject, some poses may fall outside this range.
For instance, a person lying-down only exerts 1-5 kPa of
pressure on the ground. To account for this, we tune the
sensitivity of our pressure field for every pose and report
mean of the best per-sample IOU.

We measure accuracy of our CoP by simply computing
the Euclidean distance w.r.t. ground-truth. We call this as
CoP error. Again, we report mean of the best CoP error after
tuning the sensitivity of our inferred pressure field.

The CoM error is similar to the CoP error, albiet in 3D.
It measures the Euclidean distance between the estimated
and ground-truth CoM recovered from Vicon Plug-in Gait.
Table S.4 presents summary results showing that our inferred
pressure, CoP and CoM agrees with the ground-truth.

Pressure CoM
mIOU CoP error (mm) CoM error (mm)

IPMAN (Ours) 0.32 57.3 53.3

Table S.4. Quantitative evaluations of our estimated pressure, CoP
and CoM w.r.t. ground-truth in MoYo.

6. IPMAN-O* (Extension of SMPLify-X).
To further explore the effect of our intuitive-physics terms,

we extend the optimization method SMPLify-X [22] and
name this IPMAN-O* (note that this is different from the
main paper’s IPMAN-O that extends SMPLify-XMC). We
fit the SMPL-X body model to 2D image keypoints starting
from mean pose and shape while exploiting the ground-truth
ground plane. Adapted from SMPLify-X [22], we minimize
the objective

E(β,θ,ψ, tc) =EJ2D + Eθ + λβEβ + λψEψ+

λαEα + λCEC+ (S.7)
λsEstability + λgEground.

The energy term EJ2D denotes the 2D re-projection error
whereas the remaining terms Eθ = λθbEθb + λθfEθf +
λθhEθh represent various priors for body, face, and hand
pose. Eβ , Eψ, Eα and EC are prior terms for body shape,
expression, extreme bending and self-penetration (see [22]
for details). ES and EG are the stability and ground contact
losses. The results in Tab. S.5 show a clear improvement.
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Figure S.6. Additional qualitative evaluation of IPMAN-R on RICH. The first column shows the input images of a subject doing various
sports poses. The second and third block of columns show the results of HMR (baseline) and IPMAN-R, respectively. In each block, the
first image shows the estimated mesh overlaid on the image. The next three images show different views of the estimated mesh in the world
frame. The green sphere illustrates the CoM.

Method
RICH [7]

MPJPE ↓ PVE ↓ BoSE (%) ↑
SMPLify-X [22] 268.6 228.3 96.9
IPMAN-O* (Ours) 240.9 217.1 98.0

Table S.5. IPMAN-O* compared to the optimization method of
[22] on RICH [7].

Note that SMPLify-X estimates the body’s global orienta-
tion Rb and the camera translation tc, while camera rotation
Rc and body translation tb remain zero. In order to apply our
IP terms, we use the ground-truth camera rotation Rc

w and
translation tcw to transform the estimated mesh from camera
to world coordinates. We empirically find that applying the
IP terms to the final stage of optimization in SMPLify-X
gives more accurate results than applying them to all stages.
We hypothesize that this could be due to having a better body
initialization before applying the IP terms.

7. Evaluation on 3DPW
3DPW [27] is an outdoor dataset containing pseudo

ground-truth SMPL and camera parameters recovered us-

Method
3DPW [27]

MPJPE ↓ PMPJPE ↓
SPIN [14] 97.2 59.6
IPMAN-R (Ours) 96.8 57.1

Table S.6. IPMAN-R compared to the regression method of [14]
on 3DPW [27].

ing IMU sensors attached to the actors. As also noted in [28],
we find that the ground plane in 3DPW is inconsistent. In
fact, two subjects in the same scene can be supported by
different ground-planes in the world coordinates. Addition-
ally, 3DPW primarily contains dynamic poses like walking,
climbing stairs, parkour, etc. Due to these reasons, 3DPW
does not satisfy the core assumptions of IPMAN. Neverthe-
less, we report results on 3DPW to show that the IP terms
do not degrade performance for such datasets; in fact, we
see a slight improvement in performance as illustrated in Ta-
ble S.6. This makes IPMAN applicable to everyday motion
without needing special care.
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Figure S.7. Qualitative evaluation of IPMAN-O on MoYo. In the first column, the input images of a subject doing yoga poses. The second
and third blocks show the results of the SMPLify-XMC and IPMAN-O respectively. In each block, the first and second column show the
estimated mesh projected into the image and from a second view. The last images show the pressure map with the CoM (in pink) and the
CoP (in green).
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