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1. Introduction

Here, we provide the proofs for Propositions 2 and 3; ad-
ditional details on the proposed new instances of DeepMVC;
the datasets used for evaluation; the hyperparameters used
by baselines and new instances; and the computation of met-
rics and uncertainties used in our evaluation protocol. We
also include the full list of recent methods and their Deep-
MVC components, the complete table of results from the
experimental evaluation. In addition, we include additional
experiments and analyses of reproducibility, hyperparame-
ters, and the Fusion and CM components. Finally, we reflect
on possible negative societal impacts of our work.

Our implementation of the DeepMVC framework, as
well as the datasets and the evaluation protocol used in
our experiments, is available at https://github.com/

DanielTrosten/DeepMVC. See README.md in the reposi-
tory for more details about the implementation, and how to
reproduce our results.

2. Previous methods as instances of DeepMVC

The full list of recent methods and their DeepMVC com-
ponents is given in Table 1. We observe that all but one
model includes at least one form of SSL, but the type of
SSL, and also fusion and CM, vary significantly for the dif-
ferent models. This illustrates the importance of the SSL
components in deep MVC, as well as the need for a unified
framework with a consistent evaluation protocol, in order to
properly compare and evaluate methods.

3. Contrastive alignment in deep MVC
Proof of propositions
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Proposition 2. Suppose kv, v ∈ N are random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

P{ min
v=1,...,V+1

{kv} ≤ min
v=1,...,V

{kv}
∣∣∣ k1, . . . , kV } = 1

(1)

Proof. Let MV = min
v=1,...,V

{kv}, then we need to prove that

P(MV+1 ≤ MV | k1, . . . , kV ) = 1. (2)

Due to the properties of the minimum operator, we have{
MV+1 = MV , if kV+1 ≥ MV

MV+1 < MV , otherwise
. (3)

Hence, MV+1 ≤ MV regardless of the value of kV+1,
which gives

P(MV+1 ≤ MV | k1, . . . , kV ) = 1. (4)

Proposition 3. Suppose kv, v ∈ N are iid. random variables
taking values in {1, . . . , k}. Then, for any V ≥ 1,

E( min
v=1,...,V+1

{kv}) ≤ E( min
v=1,...,V

{kv}) (5)

Proof. Let MV = min
v=1,...,V

{kv}, then

FMV
(x) := P(MV ≤ x) = 1− P(MV > x) (6)

= 1− P(k1 > x ∩ · · · ∩ kV > x) (7)

= 1− (1− Fkv
(x))V (8)

where Fkv
(x) = P(kv ≤ x).

Since MV is a non-negative random variable, we have

E(MV ) =

∞∑
x=0

(1− FMV
(x)) =

∞∑
x=0

(1− Fkv (x))
V . (9)
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Model Pub. Enc. SV-SSL MV-SSL Fusion CM
DCCAE [17] ICML’15 MLP Reconstruction CCA 1st view SC

DMSC [1] J. STSP’18 CNN Reconstruction –
Affinity
fusion

SR, SC

DMVSSC [13] ICNCC’18 CNN Reconstruction – –
Sparse SR,
SC

MvSN [4] T. CSS’19 MLP Sp. Emb. – Weighted sum k-means
MvSCN [5] IJCAI’19 MLP Sp. Emb. MSE Al. Concat. k-means

MvDSCN [26] arXiv’19 CNN – Reconstruction
Shared
network

SR, SC

DAMC [9] IJCAI’19 MLP – Reconstruction Average DEC
S2DMVSC [12] ACML’19 MLP Reconstruction – MLP SR, SC
DCMR [24] PAKDD’20 MLP Variational Reconstruction Variational Reconstruction MLP k-means

DMMC [23] ICME’20 MLP Reconstruction – MLP
Fusion
output

DCUMC [27] ICIKM’20 MLP Reconstruction
Commonness
uniqueness

MLP k-means

SGLR-MVC [22] AAAI’20 MLP – Variational Reconstruction Weighted sum GMM

EAMC [25] CVPR’20 MLP –
Distribution Al.,
Kernel Al.

Attention DDC

MVC-MAE [2] DSE’21 MLP
Reconstruction,
Ngh. preserv.

Contrastive Al. – DEC

SDC-MVC [19] IJCNN’21 MLP – CCA Concat. DEC
DEMVC [20] Inf. Sci.’21 CNN Reconstruction – – DEC

SiMVC [14] CVPR’21
MLP/
CNN

– – Weighted sum DDC

CoMVC [14] CVPR’21
MLP/
CNN

– Contrastive Al. Weighted sum DDC

Multi-VAE [21] ICCV’21 CNN – Variational Reconstruction Concat.
Gumbel,
k-means

DMIM [10] IJCAI’21 MLP
Min. superflous
information

Max. shared
information

?
Encoder
output

AMvC [15] TNNLS’22 MLP – Reconstruction Weighted sum DEC

SIB-MSC [16] arXiv’22 CNN –
Reconstruction,
Inf. Bottleneck

Affinity
fusion

SR, SC

Abbreviations: “–” = Not included, “?” = Not specified, Al. = Alignment, Concat. = Concatenate, CCA = Canonical correlation analysis,
DDC = Deep divergence-based clustering, DEC = Deep embedded clustering, Inf. Bottleneck = Information bottleneck, Ngh. preserv. =
Neighborhood preservation, SC = Spectral clustering, Sp. Emb. = Spectral Embedding, SR = Self-representation, Sparse SR = Sparse
self-representation,

Table 1. Full overview of methods from previous work and their DeepMVC components.

Hence

E(MV )− E(MV+1)

=

∞∑
x=0

(1− Fkv
(x))V −

∞∑
x=0

(1− Fkv
(x))V+1 (10)

=

∞∑
x=0

(1− Fkv (x))
V (1− (1− Fkv (x))) (11)

=

∞∑
x=0

(1− Fkv
(x))V︸ ︷︷ ︸

≥0

Fkv
(x)︸ ︷︷ ︸

≥0

≥ 0 (12)

which is a sum of non-negative terms, since Fkv
(x) ∈ [0, 1]

is a probability. This gives

E(MV+1) ≤ E(MV ) (13)

4. New instances of DeepMVC
In this section we provide additional details on loss func-

tions, particularly the weighted sum fusion, and the DDC [7]
clustering module. The loss functions used to train the new
instances are on the form

LTotal = wSVLSV + wMVLMV + wCMLCM (14)



where LSV, LMV, and LCM denote the losses from the SV-
SSL, MV-SSL, and CM components, respectively. Note
that the losses LSV and LMV correspond to the losses in
Section 5 of the main paper. (wSV, wMV, wCM) are optional
weights for the respective losses, which are all set to 1 unless
specified otherwise.
Connection between InfoDDC and contrastive self-
supervised learning For two views u ̸= v ∈ 1, . . . , V ,
contrastive SSL can be regarded as variational maximization
of the mutual information

I(z(v), z(u)) (15)

where z(v) and z(u) have multi-variate, continuous distribu-
tions in Rd.

In InfoDDC, we instead maximize mutual information
between pairs of uni-variate, discrete random variables

I(c(v), c(u)) (16)

where we assume that the distributions of c(v) and c(u) are
given by the view-specific representations

P(c(w) = i) = z
(w)
[i] , i = 1, . . . , d, w ∈ {u, v} (17)

where z
(w)
[i] denotes component i of the view-specific rep-

resentation z(w) = f (w)(x(w)). Hence, although InfoDDC
might appear similar to CA-based methods, the maximiza-
tion of mutual information is done for different pairs of
random variables.
Weighted sum fusion. As [14], we implement the weighted
sum fusion as

zi =

V∑
v=1

w(v)z
(v)
i , (18)

where the weights w(1), . . . , w(V ) are non-negative and
sum to 1. These constraints are implemented by keeping
a vector of trainable, un-normalized weights, from which
w(1), . . . , w(V ) can be computed by applying the softmax
function.
DDC clustering module. The DDC [7] clustering mod-
ule consists of two fully-connected layers. The first layer
calculates the hidden representation hi ∈ RDDDC from the
fused representation zi. The dimensionality of the hidden
representation, DDDC is a hyperparameter set to 100 for all
models. The second layer computes the cluster membership
vector αi ∈ Rk from the hidden representation.

DDC’s loss function consists of three terms

LCM
DDC = LDDC, 1 + LDDC, 2 + LDDC, 3. (19)

The three terms encourage (i) separable and compact clusters
in the hidden space; (ii) orthogonal cluster membership vec-
tors; and (iii) cluster membership vectors close to simplex
corners, respectively.

The first term maximizes the pairwise Cauchy-Schwarz
divergence [6] between clusters (represented as probability
densities) in the space of hidden representations

LDDC, 1 = (20)

(
k

2

)−1 k−1∑
a=1

k∑
b=a

n∑
i=1

n∑
j=1

αiaκijαjb√
n∑

i=1

n∑
j=1

αiaκijαja

n∑
i=1

n∑
j=1

αibκijαjb

(21)

where κij = exp
(
− ||hi−hj ||2

2σ2

)
and σ is a hyperparameter.

Following [7], we set σ to 15% of the median pairwise
difference between the hidden representations.

The second term minimizes the pairwise inner product
between cluster membership vectors

LDDC, 2 =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

αiα
⊤
j . (22)

The third term encourages cluster membership vectors to
be close to the corners of the probability simplex in Rk

LDDC, 3 = (23)

(
k

2

)−1 k−1∑
a=1

k∑
b=a

n∑
i=1

n∑
j=1

miaκijmjb√
n∑

i=1

n∑
j=1

miaκijmja

n∑
i=1

n∑
j=1

mibκijmjb

(24)

where mia = exp(−||αi−ea||2), and ea is the a-th simplex
corner.

5. Experiments
5.1. Datasets

Dataset details are listed in Table 2. The code repository
includes pre-processed Caltech7 and Caltech20 datasets. The
other datasets can be generated by following the instructions
in README.md (these could not be included in the archive
due to limitations on space).
Caltech details. We use the same features and subsets of
the Caltech101 [3] dataset as [5].

• Features: Gabor, Wavelet Moments, CENsus TRans-
form hISTogram (CENTRIST), Histogram of Oriented
Gradients (HOG), GIST, and Local Binary Patterns
(LBP).

• Caltech7 classes: Face, Motorbikes, Dolla-Bill,
Garfield, Snoopy, Stop-Sign, Windsor-Chair.



Dataset n v k nsmall nbig Dim. Licence

NoisyMNIST [8] 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
NoisyFashion [18] 70000 2 10 7000 7000 (28× 28)2 MIT
EdgeMNIST [8] 70000 2 10 6313 7877 (28× 28)2 CC BY-SA 3.0
EdgeFashion [18] 70000 2 10 7000 7000 (28× 28)2 MIT
COIL-20 [11] 480 3 20 24 24 (64× 64)3 None
Caltech7 [3] 1474 6 7 34 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
Caltech20 [3] 2386 6 20 33 798 48, 40, 254, 1984, 512, 928 CC BY 4.0
PatchedMNIST [8] 21770 12 3 6903 7877 (28× 28)12 CC BY-SA 3.0

Table 2. Dataset details. n = number of instances, v = number of views, k = number of classes/clusters, nsmall = number of instances in
smallest class, nbig = number of instances in largest class, Dim. = view dimensions.

• Caltech20 classes: Face, Leopards, Motorbikes,
Binocular, Brain, Camera,Car-Side, Dolla-Bill, Ferry,
Garfield, Hedgehog, Pagoda, Rhino, Snoopy, Stapler,
Stop-Sign, Water-Lilly, WindsorChair, Wrench, Yin-
yang.

5.2. Hyperparameters

Network architectures. The encoder and decoder archi-
tectures are listed in Table 3. MLP encoders/decoders are
used for Caltech7 and Caltech20 as these contain vector data.
The other datasets contain images, so CNN encoders and
decoders are used for them.
Other hyperparameters. Table 4 lists other hyperparame-
ters used for the baselines and new instances.

5.3. Computational resources

We run our experiments on a Kubernetes cluster, where
jobs are allocated to nodes with Intel(R) Xeon(R) E5-2623
v4 or Intel(R) Xeon(R) Silver 4210 CPUs (2 cores allo-
cated per job); and Nvidia GeForce GTX 1080 Ti or Nvidia
GeForce RTX 2080 Ti GPUs. Each job has 16 GB RAM
available.

With this setup, 5 training runs on NoisyMNIST, Noisy-
Fashion, EdgeMNIST, and EdgeFashion take approximately
24 hours. Training times for the other datasets are approxi-
mately between 1 and 3 hours.

The Dockerfile used to build our docker image can be
found in the code repository.

5.4. Evaluation protocol

Metrics. We measure performance using the accuracy

ACC = max
m∈M

∑n
i=1 δ(m(ŷi)− yi)

n
(25)

where δ(·) is the Kronecker-delta, ŷi is the predicted cluster
of instance i, and yi is the ground truth label of instance i.
The maximum runs over M, which is the set of all bijective
mappings from {1, . . . , k} to itself.

We also compute the normalized mutual information

NMI =
MI(ŷ,y)

1
2 (H(ŷ) +H(y))

(26)

where ŷ = [ŷ1, . . . , ŷn], y = [y1, . . . , yn], MI(·, ·) and
H(·) denotes the mutual information and entropy, respec-
tively.
Uncertainty estimation. The uncertainty of our perfor-
mance statistic can be estimated using bootstrapping. Sup-
pose the R training runs result in the R tuples

(L1,M1), . . . , (LR,MR) (27)

where Li is the final loss of run i, and Mi is resulting perfor-
mance metric for run i. We then sample B bootstrap samples
uniformly from the original results

(Lb
j ,M

b
j ) ∼ Uniform{(L1,M1), . . . , (LR,MR)}, (28)

j = 1, . . . , R, b = 1, . . . B.

The performance statistic for bootstrap sample b is then given
by

M b
⋆ = M b

jb⋆
, jb⋆ = arg min

j=1,...,R
{Lb

j}. (29)

We then estimate the uncertainty of the performance statis-
tic by computing the standard deviation of the bootstrap
statistics M1

⋆ , . . .M
B
⋆

σ̂M⋆ =

√∑B
b=1(M

b
⋆ − M̄⋆)2

B − 1
, where M̄⋆ =

∑B
b=1 M

⋆
b

B
.

(30)

5.5. Results
Evaluation results. The complete evaluation results are
given in Table 5.
Ablation study – Fusion and Clustering module. Table 6
shows the results of ablation studies with the fusion and clus-
tering module (CM) components. Since these components
can not be completely removed, we instead replace more



CNN encoder CNN decoder MLP encoder MLP decoder

Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(256)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(64× 3× 3) Dense(1024) Dense(1024)
ReLU BatchNorm BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU ReLU
Conv(64× 3× 3) UpSample(2× 2) Dense(1024) Dense(1024)
ReLU TransposeConv(64× 3× 3) BatchNorm BatchNorm
Conv(64× 3× 3) ReLU ReLU ReLU
BatchNorm TransposeConv(1× 3× 3) Dense(1024) Dense(1024)
ReLU Sigmoid BatchNorm BatchNorm
MaxPool(2× 2) ReLU ReLU

Dense(256) Dense(input dim)
Sigmoid

Table 3. Network architectures.

Model Batch size Learning rate wSV wMV wCM Pre-train Gradient clip

DMSC 100 10−3 1.0 – – ✓ 10
MvSCN 512 10−4 0.999 0.001 – ✘ 10
EAMC 100 † – 1.0 1.0 ✘ 10
SiMVC 100 10−3 – – 1.0 ✘ 10
CoMVC 100 10−3 – 0.1 1.0 ✘ 10
Multi-VAE 64 5 · 10−4 – 1.0 – ✓ 10
AE–DDC 100 10−3 1.0 – 1.0 ✓ 10
AECoDDC 100 10−3 1.0 0.1 1.0 ✓ 10
AE–KM 100 10−3 1.0 – – ✘ 10
AECoKM 100 10−3 1.0 0.1 – ✘ 10
InfoDDC 256 10−3 – 0.1 1.0 ✘ 10
MV-IIC 256 10−3 – 0.01 1.0 ✘ 10

Table 4. Hyperparameters used to train the models. † = EAMC [25] has different learning rates for the different components, namely 10−5

for the encoders and clustering module, and 10−4 for the attention module and discriminator.

complicated components, with the simplest possible compo-
nent. Thus, we replace weighted sum with concatenate for
the fusion component, and DDC with k-means for the CM
component.

For the fusion component, we see that the weighted sum
tends to improve over the concatenation. For the CM, we
observe that the performance is better with DDC than with
k-means on NoisyMNIST, but the improvement more varied
on Caltech7. This is consistent with what we observed in the
evaluation results in the main paper.
Reproducibility of original results. Table 7 compares the
results of our re-implementation of the baselines, to the re-
sults reported by the original authors. The comparison shows
large differences in performance for several methods, and the
differences are particularly large for MvSCN and Multi-VAE.
For MvSCN, we do not use the same autoencoder prepro-
cessing of the data. We also had difficulties getting the
Cholesky decomposition to converge during training. For
MultiVAE, we note that NoisyMNIST and NoisyFashion

are generated without noise in the original paper, possibly
resulting in datasets that are simpler to cluster. We were
however not able to determine the reason for the difference
in performance on COIL-20.

Additionally, all methods use different network architec-
tures and evaluation protocols in the original publications,
making it difficult to accurately compare performance be-
tween methods and their implementations. This illustrates
the difficulty of reproducing and comparing results in deep
MVC, highlighting the need for a unified framework with
a consistent evaluation protocol and an open-source imple-
mentation.
Sensitivity to hyperparameters Table 8 shows the results
of hyperparameter sweeps for the following hyperparame-
ters:

• Weight of reconstruction loss (wSV).

• Weight of contrastive loss (wMV).



NoisyMNIST NoisyFashion EdgeMNIST EdgeFashion
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC 0.66 (0.02) 0.67 (0.01) 0.49 (0.05) 0.48 (0.03) 0.51 (0.02) 0.47 (0.02) 0.52 (0.01) 0.47 (0.00)

MvSCN 0.15 (0.00) 0.02 (0.00) 0.14 (0.00) 0.01 (0.00) 0.14 (0.00) 0.01 (0.01) 0.12 (0.00) 0.03 (0.00)

EAMC 0.83 (0.04) 0.90 (0.02) 0.61 (0.02) 0.71 (0.02) 0.76 (0.05) 0.79 (0.03) 0.51 (0.03) 0.47 (0.01)

SiMVC 1.00 (0.02) 1.00 (0.02) 0.52 (0.02) 0.51 (0.02) 0.89 (0.06) 0.90 (0.04) 0.61 (0.01) 0.56 (0.02)

CoMVC 1.00 (0.00) 1.00 (0.00) 0.67 (0.03) 0.68 (0.03) 0.97 (0.08) 0.94 (0.07) 0.56 (0.03) 0.52 (0.01)

Multi-VAE 0.98 (0.05) 0.96 (0.02) 0.62 (0.02) 0.60 (0.01) 0.85 (0.01) 0.76 (0.01) 0.58 (0.01) 0.64 (0.00)

AE–KM 0.74 (0.03) 0.71 (0.00) 0.58 (0.02) 0.59 (0.01) 0.60 (0.00) 0.57 (0.00) 0.54 (0.00) 0.58 (0.00)

AE–DDC 1.00 (0.04) 1.00 (0.03) 0.69 (0.06) 0.65 (0.05) 0.88 (0.11) 0.88 (0.09) 0.60 (0.01) 0.58 (0.01)

AECoKM 1.00 (0.00) 0.99 (0.00) 0.63 (0.07) 0.73 (0.03) 0.38 (0.03) 0.31 (0.02) 0.39 (0.04) 0.34 (0.02)

AECoDDC 1.00 (0.00) 0.99 (0.00) 0.80 (0.02) 0.77 (0.01) 0.89 (0.10) 0.90 (0.09) 0.67 (0.09) 0.62 (0.06)

InfoDDC 0.90 (0.05) 0.92 (0.04) 0.54 (0.03) 0.52 (0.04) 0.62 (0.04) 0.52 (0.06) 0.43 (0.01) 0.43 (0.03)

MV-IIC 0.52 (0.04) 0.79 (0.02) 0.52 (0.07) 0.74 (0.02) 0.31 (0.04) 0.21 (0.05) 0.52 (0.04) 0.59 (0.04)

COIL-20 Caltech7 Caltech20 PatchedMNIST
ACC NMI ACC NMI ACC NMI ACC NMI

DMSC −† (−) −† (−) 0.50 (0.03) 0.50 (0.02) 0.35 (0.01) 0.55 (0.00) −† (−) −† (−)

MvSCN 0.21 (0.00) 0.23 (0.01) 0.29 (0.02) 0.02 (0.00) 0.13 (0.01) 0.09 (0.01) −† (−) −† (−)

EAMC 0.39 (0.15) 0.52 (0.22) 0.44 (0.02) 0.23 (0.03) 0.22 (0.04) 0.23 (0.02) −‡ (−) −‡ (−)

SiMVC 0.90 (0.04) 0.96 (0.02) 0.41 (0.02) 0.51 (0.09) 0.34 (0.02) 0.52 (0.01) 0.84 (0.04) 0.64 (0.11)

CoMVC 0.87 (0.03) 0.96 (0.02) 0.38 (0.01) 0.55 (0.02) 0.34 (0.01) 0.59 (0.02) 0.73 (0.12) 0.57 (0.19)

Multi-VAE 0.74 (0.02) 0.84 (0.01) 0.47 (0.02) 0.47 (0.01) 0.40 (0.01) 0.57 (0.01) 0.94 (0.00) 0.77 (0.00)

AE–KM 0.88 (0.04) 0.92 (0.01) 0.44 (0.03) 0.52 (0.01) 0.45 (0.02) 0.57 (0.01) 0.87 (0.00) 0.68 (0.01)

AE–DDC 0.80 (0.04) 0.93 (0.02) 0.40 (0.01) 0.54 (0.07) 0.34 (0.01) 0.44 (0.03) 0.77 (0.10) 0.59 (0.17)

AECoKM 0.84 (0.04) 0.94 (0.02) 0.20 (0.01) 0.05 (0.00) 0.22 (0.02) 0.27 (0.02) 0.96 (0.00) 0.85 (0.00)

AECoDDC 0.87 (0.01) 0.96 (0.00) 0.36 (0.01) 0.43 (0.03) 0.31 (0.02) 0.51 (0.02) 0.99 (0.00) 0.97 (0.00)

InfoDDC 0.25 (0.04) 0.54 (0.03) 0.51 (0.01) 0.60 (0.04) 0.58 (0.07) 0.63 (0.03) 0.99 (0.00) 0.96 (0.00)

MV-IIC 0.83 (0.05) 0.94 (0.02) 0.53 (0.00) 0.63 (0.04) 0.49 (0.01) 0.61 (0.01) 0.97 (0.00) 0.90 (0.01)

Table 5. Clustering results. Standard deviations (obtained by bootstrapping) are shown in parentheses. † = training ran out of memory, ‡ =
training resulted in NaN loss.

• Temperature in contrastive loss (τ ).

• Weight of entropy regularization (λ).

We emphasize that these results were not used to tune hyper-
parameters for the new instances. Rather, they are included
to investigate how robust these methods are towards changes
in the hyperparameter configuration. The results show that
the new instances are mostly insensitive to changes in their
hyperparameters. We however observe two cases where the
hyperparameter configurations can have significant impact
on the model performance. First, AECoDDC shows a drop
in performance when the weight of the contrastive loss is
set to high on Caltech7 (Table 8b). This is consistent with
our observations regarding contrastive alignment on datasets
with many views. Second, InfoDDC and MV-IIC performs
worse when the entropy regularization weight is set too low,
indicating that sufficient regularization is required for these
models to perform well.

6. Potential negative societal impacts

As is the case with most methodological research, our
work can be applied to downstream applications with neg-
ative societal impact – for instance by reflecting biases in
the dataset the model was trained on. We note that in unsu-
pervised learning, it is particularly important to check what
a model has learned, due to the lack of label supervision.
This is crucial if the models are used to make high-stakes
decisions.
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(a) Fusion

NoisyMNIST Caltech7
Model Concat. Weighted Concat. Weighted

SiMVC 1.00 1.00 (0.00) 0.36 0.41 (+0.04)

CoMVC 1.00 1.00 (0.00) 0.42 0.38 (−0.04)

AE–DDC 1.00 1.00 (0.00) 0.36 0.40 (+0.04)

AECoDDC 1.00 1.00 (0.00) 0.39 0.36 (−0.03)

InfoDDC 0.93 0.90 (−0.03) 0.36 0.51 (+0.15)

(b) CM

NoisyMNIST Caltech7
Model k-means DDC k-means DDC

SiMVC 0.67 1.00 (+0.33) 0.39 0.41 (+0.01)

CoMVC 0.56 1.00 (+0.44) 0.22 0.38 (+0.16)

AE–DDC 0.74 1.00 (+0.26) 0.44 0.40 (−0.04)

AECoDDC 1.00 1.00 (0.00) 0.20 0.36 (+0.16)

InfoDDC 0.14 0.90 (+0.76) 0.59 0.51 (−0.08)

Table 6. Accuracies from ablation studies with the Fusion and CM
components.

Model Dataset Orig. Ours

N-MNIST 0.99 0.15 (−0.84)
MvSCN

Caltech20 0.59 0.13 (−0.46)

EAMC E-MNIST 0.67 0.76 (+0.09)

E-MNIST 0.86 0.89 (+0.03)

E-Fashion 0.57 0.61 (+0.04)SiMVC
COIL-20 0.78 0.90 (+0.12)

E-MNIST 0.96 0.97 (+0.01)

E-Fashion 0.60 0.56 (−0.04)CoMVC
COIL-20 0.89 0.87 (−0.02)

N-MNIST† 1.00 0.98 (−0.02)

N-Fashion† 0.91 0.62 (−0.29)Multi-VAE
COIL-20 0.98 0.74 (−0.24)

Table 7. Accuracies from our experiment vs. accuracies reported
by the original authors. † = method is originally evaluated on a
slightly different dataset.
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(a) Weight of reconstruction loss (wSV).

NoisyMNIST Caltech7
Rec. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AE–DDC 1.00 (0.03) 0.94 (0.03) 1.00 (0.03) 0.94 (0.01) 0.41 (0.01) 0.41 (0.03) 0.44 (0.02) 0.45 (0.02)

AECoDDC 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.40 (0.05) 0.33 (0.02) 0.34 (0.03) 0.49 (0.04)

AECoKM 0.74 (0.02) 0.70 (0.04) 0.74 (0.03) 0.93 (0.02) 0.07 (0.01) 0.05 (0.00) 0.04 (0.01) 0.04 (0.02)

(b) Weight of contrastive loss (wMV).

NoisyMNIST Caltech7
Con. weight 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0

AECoDDC 1.00 (0.00) 0.99 (0.00) 0.99 (0.00) 0.99 (0.00) 0.46 (0.02) 0.40 (0.05) 0.19 (0.03) 0.09 (0.01)

AECoKM 0.89 (0.01) 0.73 (0.03) 0.77 (0.01) 0.67 (0.02) 0.04 (0.02) 0.04 (0.01) 0.06 (0.01) 0.05 (0.00)

(c) Temperature in the contrastive loss (τ ).

NoisyMNIST Caltech7
τ 0.01 0.07 0.1 1.0 0.01 0.07 0.1 1.0

AECoDDC 0.99 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00) 0.31 (0.03) 0.39 (0.01) 0.35 (0.02) 0.48 (0.01)

AECoKM 0.99 (0.00) 0.91 (0.02) 0.74 (0.02) 0.78 (0.05) 0.34 (0.01) 0.05 (0.01) 0.06 (0.01) 0.46 (0.01)

(d) Weight of the entropy regularization (λ).

NoisyMNIST Caltech7
λ 0.5 1.5 5.0 10.0 0.5 1.5 5.0 10.0

MV-IIC 0.03 (0.01) 0.81 (0.01) 0.82 (0.00) 0.82 (0.00) 0.04 (0.01) 0.64 (0.04) 0.60 (0.01) 0.52 (0.01)

InfoDDC 0.21 (0.02) 0.37 (0.02) 0.84 (0.04) 0.94 (0.07) 0.60 (0.06) 0.60 (0.02) 0.57 (0.01) 0.51 (0.01)

Table 8. Results (NMI) of hyperparameter sweeps for the new instances.

[27] Linlin Zong, Faqiang Miao, Xianchao Zhang, and Bo Xu.
Multimodal Clustering via Deep Commonness and Unique-
ness Mining. In ICIKM, 2020. 2
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