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1. Proof Of Eqn. (8)
Taking the logarithm of Eqn. (6) and Eqn. (7), the optimization formula can be derived as follows:
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In addition, minimizing logLs(ys, ŷs) and logLt(yt) is equivalent to minimizing Ls(ys, ŷs) and Lt(yt). Therefore, the
above formula can be further derived as follows:
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2. Implementation Details
Our proposed FREDOM approach is implemented based on the implementation of SAC [1], DAFormer [6], and Im-

ageGPT [2]. In particular, we borrow the implementation of DeepLab-V2 of SAC 1. We use DeepLab-V2 with ResNet-101
backbone. The Atrous Spatial Pyramid Pooling with a sampling rate of {6, 12, 18, 24} has been implemented in our work.
The predicted segmentation is computed from the output of layer conv5. For the Transformer backbone, we borrow the
implementation of DAFormer2. Our Transformer architecture also uses the MiT-B5 encoder as the backbone to produce a
feature pyramid with dimensions of {64, 128, 320, 512}. To output the predicted segmentation, we use the decoder with a
dilation rate of {1, 6, 12, 18}. Both DeepLab-V2 and Transformer of segmentation networks are pretrained on ImageNet-1K.
For the Conditional Structure Network, we adopt the implementation of Image-GPT3. The structure of our conditional net-
work structure is designed based on the base version of Image GPT [2], which is a variant of GPT-2 [8]. The Conditional
Structure Network G is trained on the segmentation labels of the source domain.

For the adaptation loss in the target domain Lt, we also use the self-supervised loss with pseudo labels [1]. Our training
procedure and augmentation methods are implemented based on the implementation of SAC [1] and DAFormer [6]. We
also adopt the data sampling technique of SAC [1] in our training. For the mask sampling technique, during training the
conditional structure network, for each image in each iteration, we randomly generate a binary mask within three cases, as
mentioned in the main paper.

3. Additional Experimental Results
3.1. Ablation Study

Table 1. Effectiveness of our Mask Sampling Approach to Fairness Improvement Using DeepLab-V2 (DL-V2).

LClass
LCond Majority Group Minority Group mIoU STDM1 M2 M3 Road Build. Veget. Car S.Walk Sky Pole Person Terrain Fence Wall Sign Bike Truck Bus Train Tr.Light Rider M.bike

DL-V2 ✗ ✗ ✗ ✗ 90.3 87.2 88.1 88.6 53.5 87.3 44.4 67.3 42.2 28.5 41.1 50.1 54.4 52.5 56.9 33.7 48.9 33.1 42.6 57.4 20.9
+LNG ✗ ✗ ✗ ✗ 90.4 87.1 88.0 88.6 53.6 87.2 44.7 67.4 42.3 28.4 41.2 49.8 54.9 53.0 57.2 37.8 48.8 33.0 42.5 57.7 20.7
+LCB ✗ ✗ ✗ ✗ 90.5 87.2 88.2 88.7 53.5 87.3 44.8 67.6 42.2 28.5 41.6 51.6 53.8 54.3 57.6 37.5 49.2 33.6 43.5 58.0 20.6
DL-V2 ✓ ✗ ✗ ✗ 90.6 87.3 88.1 88.8 53.7 87.4 44.9 67.7 42.3 28.6 41.9 52.9 57.6 55.2 57.5 47.6 50.8 36.9 44.9 59.2 19.8
DL-V2 ✓ ✓ ✗ ✗ 90.6 87.3 88.2 88.8 53.7 87.5 44.9 67.8 42.2 29.0 41.9 53.0 57.7 55.2 57.7 48.8 50.8 37.5 45.1 59.4 19.7
DL-V2 ✓ ✓ ✓ ✗ 90.8 87.5 88.5 88.9 54.0 87.6 45.1 68.4 42.3 30.4 42.1 53.6 57.8 55.3 58.7 53.7 50.8 39.5 46.1 60.1 19.3
DL-V2 ✓ ✓ ✓ ✓ 90.9 87.8 88.6 89.7 54.1 89.5 45.2 68.8 42.6 32.6 44.1 57.1 58.1 58.4 62.6 55.3 51.4 40.0 47.7 61.3 19.1

Effectiveness of Mask Sampling Approach To further illustrate the effectiveness, we conduct additional ablation studies
using DeepLabV2 (DL-V2) under the domain adaptation setting trained on the GTA5 → Cityscapes benchmark. We consider
experiments of the pre-defined weight-balancing different classes [13] (LCB), normalizing gradients (LNG). In addition, we
evaluate the impact of the mask sampling approaches to the fairness improvement. There are three different strategies of
binary mask samplings that will be evaluated, i.e., (1) If m contains only one unmasked pixel (denoted as M1), G learns to
capture structural information of segmentation conditioned on a given pixel, (2) If m contains more than one unmasked pixel
(denoted as M2), it increases the flexibility of G on learning segmentation structures conditioned on unmasked pixels, (3)
If m does not contain any unmasked pixels (denoted as M3), it is equivalent to learning the log-likelihood of segmentation
maps. The experimental results in Table 1 show the advantages of our method. We found that LNG stabilizes the training
procedure and LCB brings a minor improvement. Also, while LCond with simple binary masks sampled as M1 is not powerful
enough to model the conditional structures, combining three strategies of mask samplings brings a significant performance
improvement of the segmentation model, especially in classes of the minority group, and promotes fairness in the model.

3.2. Quantitative Results

Table 2 reports our experimental results using DeepLab-V2 and Transformer networks compared to prior unsupervised
domain adaptation methods. The table includes the results of both benchmarks, i.e., SYNTHIA → Cityscapes and GTA5 →
Cityscapes. Overall, our proposed approach has achieved State-of-the-Art performance on both benchmarks and significantly
improved the IoU results of classes in the minority which means promoting fairness of the model predictions.

1https://github.com/visinf/da-sac
2https://github.com/lhoyer/DAFormer
3https://github.com/teddykoker/image-gpt



Table 2. Comparison of Semantic Segmentation Performance with UDA Methods Using DeepLab-V2 (DL-V2) and Transformer (Trans.).

Approach Network Majority Group Minority Group mIoU STDRoad Build. Veget. Car S.Walk Sky Pole Person Terrain Fence Wall Sign Bike Truck Bus Train Tr.Light Rider M.bike

SYNTHIA → Cityscapes

CBST [15] DL-V2 68.0 76.3 77.6 81.6 29.9 78.3 33.9 60.6 − 1.4 10.8 29.5 39.8 − 23.5 − 22.8 28.3 18.8 42.6 26.8
DACS [9] DL-V2 80.6 81.9 83.7 82.9 25.1 90.8 37.2 67.6 − 2.9 21.5 24.0 47.6 − 38.9 − 22.7 38.3 28.5 48.3 28.4
CorDA [13] DL-V2 93.3 85.3 84.9 85.6 61.6 90.4 37.8 69.7 − 5.1 19.6 42.8 53.9 − 38.4 − 36.6 41.8 32.6 55.0 27.3
AdvEnt [11] DL-V2 87.0 79.7 80.1 72.7 44.1 83.6 24.3 56.4 − 0.6 9.6 7.2 33.7 − 32.6 − 4.8 23.7 12.8 40.8 31.4
DADA [12] DL-V2 89.2 81.4 81.8 79.7 44.8 84.0 26.2 54.7 − 0.3 6.8 11.1 38.8 − 40.7 − 8.6 19.3 14.0 42.6 32.0
MaxSquare [3] DL-V2 82.9 80.3 82.5 79.0 40.7 82.2 25.8 53.1 − 0.8 10.2 18.2 35.6 − 31.4 − 12.8 18.0 10.4 41.4 30.6
IntraDA [7] DL-V2 84.3 79.5 80.0 78.0 37.7 84.1 24.9 57.2 − 0.4 5.3 8.4 36.5 − 38.1 − 9.2 23.0 20.3 41.7 31.0
BiMaL [10] DL-V2 92.8 81.5 82.4 85.7 51.5 84.6 30.4 55.9 − 1.0 10.2 15.9 38.8 − 44.5 − 17.6 22.3 24.6 46.2 30.9
SAC [1] DL-V2 89.3 85.6 87.1 87.0 47.3 89.1 43.1 63.7 − 1.3 26.6 32.0 52.8 − 35.6 − 45.6 25.3 30.3 52.6 27.9
ProDA [14] DL-V2 87.8 84.6 88.1 88.2 45.7 84.4 44.0 74.2 − 0.6 37.1 37.0 45.6 − 51.1 − 54.6 24.3 40.5 55.5 26.4
FREDOM DL-V2 86.0 87.0 87.1 87.1 46.3 89.1 48.7 71.2 − 5.3 33.3 46.8 59.9 − 54.6 − 53.4 38.1 51.3 59.1 24.0
TransDA-S [4] Trans. 82.1 86.2 89.2 90.9 40.9 90.3 53.0 68.0 − 1.0 25.8 36.1 45.4 − 58.4 − 53.7 26.2 41.2 55.5 27.1
TransDA [4] Trans. 90.4 86.4 90.3 92.3 54.8 93.0 53.8 71.2 − 1.7 31.1 37.1 49.8 − 66.0 − 61.1 25.3 44.4 59.3 27.3
ProCST [5] Trans. 84.3 87.7 86.1 87.6 41.1 87.9 50.7 74.7 − 6.1 42.6 54.2 62.5 − 61.4 − 55.5 47.2 53.3 61.4 22.6
DAFormer [6] Trans. 84.5 88.4 86.0 87.2 40.7 89.8 50.0 73.2 − 6.5 41.5 54.6 61.7 − 53.2 − 55.0 48.2 53.9 60.9 22.8
FREDOM Trans. 89.4 89.3 89.9 90.5 50.8 93.7 57.3 79.4 − 9.3 48.8 60.1 68.1 − 66.0 − 65.1 51.6 62.3 67.0 22.0

GTA5 → Cityscapes

CBST [15] DL-V2 91.8 80.5 83.9 82.7 53.5 80.9 34.0 53.1 34.2 21.0 32.7 20.4 42.8 30.3 35.9 16.0 28.9 24.0 25.9 45.9 25.4
DACS [9] DL-V2 89.9 87.9 88.0 84.5 39.7 88.8 38.5 67.2 44.0 39.5 30.7 52.8 34.0 45.7 50.2 0.0 46.4 35.8 27.3 52.1 25.4
CorDA [13] DL-V2 94.7 87.6 87.6 90.2 63.1 89.7 40.2 66.7 47.0 40.6 30.7 51.6 56.0 48.9 57.5 0.0 47.8 35.9 39.8 56.6 24.8
AdvEnt [11] DL-V2 89.9 81.6 83.9 83.7 36.5 77.1 28.5 57.4 34.0 25.2 29.2 22.4 23.3 29.4 39.1 1.5 32.3 27.9 28.4 43.8 26.4
MaxSquare [3] DL-V2 89.4 82.1 85.3 84.6 43.0 78.2 30.3 63.0 39.4 21.3 30.5 24.0 33.5 36.4 43.0 5.5 34.7 22.9 34.7 46.4 25.7
IntraDA [7] DL-V2 90.6 82.6 85.2 86.4 36.1 80.2 27.6 59.3 39.3 21.3 29.5 23.1 37.6 33.6 53.9 0.0 31.4 29.4 32.7 46.3 26.7
BiMaL [10] DL-V2 91.2 82.7 85.4 86.6 39.6 80.8 29.6 59.7 44.0 25.2 29.4 25.5 36.8 38.5 47.6 1.2 34.3 30.4 34.0 47.3 25.9
SAC [1] DL-V2 90.3 86.6 87.5 88.5 53.9 86.0 45.1 67.6 40.2 27.4 42.5 42.9 45.1 49.0 54.6 9.8 48.6 29.7 26.6 53.8 24.2
ProDA [14] DL-V2 87.8 79.7 88.6 88.8 56.0 82.1 45.6 70.7 45.2 44.8 46.3 53.5 56.4 45.5 59.4 1.0 53.5 39.2 48.9 57.5 21.7
FREDOM DL-V2 90.9 87.8 88.6 89.7 54.1 89.5 45.2 68.8 42.6 32.6 44.1 57.1 58.1 58.4 62.6 55.3 51.4 40.0 47.7 61.3 19.1
TransDA-S [4] Trans. 92.9 88.2 89.6 91.4 59.1 94.1 47.6 74.3 42.0 32.0 42.5 39.2 51.4 54.0 58.0 44.4 57.6 45.3 48.3 60.6 20.8
TransDA [4] Trans. 94.7 89.2 90.4 92.5 64.2 93.7 50.1 76.7 50.2 45.8 48.1 40.8 55.4 56.8 60.1 47.6 60.2 47.6 49.6 63.9 19.1
ProCST [5] Trans. 95.8 89.8 90.2 92.3 69.6 93.0 49.8 72.2 50.3 45.0 55.8 63.3 63.1 72.2 78.8 65.1 56.8 44.9 56.4 68.7 17.1
DAFormer [6] Trans. 95.7 89.4 89.9 92.3 70.2 92.5 49.6 72.2 47.9 48.1 53.5 59.4 61.8 74.5 78.2 65.1 55.8 44.7 55.9 68.3 17.3
FREDOM Trans. 96.7 90.9 91.6 94.1 74.8 94.4 57.5 78.4 52.1 49.0 58.1 71.4 68.9 83.9 85.2 72.5 63.4 53.1 62.8 73.6 15.8

3.3. Qualitative Results

Figure 1 illustrates additional qualitative results of the SYNTHIA → Cityscapes experiments. In particular, we compare
our results with AdvEnt [11], BiMaL [10], SAC [1], and DAFormer [6]. Overall, our approach produces better quality
compared to prior methods. The predictions of segmentation maps of classes in minority groups have been improved and
well-segmented compared to other methods.
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