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In this supplementary material, we provide additional
details about our approach, experiment settings, and re-
sults. In Sec. A, we first give implementation details,
both in terms of network architecture and training hyper-
parameters. We then follow by extensively detailing the
evaluation datasets and setup in Sec. B.

In Sec. C, we provide additional analysis on the proposed
SPARF. In particular, we analyze the robustness of our joint
pose-NeRF training approach to the camera pose initializa-
tion. We also present additional ablative experiments and
give insights into failure cases. Importantly, we also look at
the impact of using different correspondence predictors and
the influence of the quality of the predicted matches.

In Sec. D, we present more detailed quantitative and
qualitative results for our joint pose-NeRF refinement ap-
proach SPARF. Notably, we start from different camera
pose initialization schemes than in the main paper and train
with different numbers of input views. For completeness,
we also provide comparisons of our approach SPARF to
BARF with noisy input poses, but when all training views
are available, i.e. in the many-view regime.

Finally, we provide additional quantitative results when
considering fixed ground-truth poses in Sec. E. In particular,
we experiment with more input views, i.e. 6 and 9 images
instead of 3.

A. Training and Implementation Details
In this section, we first describe the architecture of the

proposed SPARF. We additionally share all training details
and hyper-parameters. For completeness, we also give de-
tails about the architectures and/or experimental setups used
when training or evaluating baseline works.

A.1. NeRF architecture

We adopt the network architecture of the original
NeRF [12] and its hierarchical sampling strategy with some
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modifications. The coarse and fine MLPs both have 128
hidden units in each layer. The numbers of sampled points
of both coarse sampling and importance sampling are set
to 128, and we use the softplus activation on the volume
density output σ for improved stability.

Moreover, we found that for joint pose-NeRF optimiza-
tion on LLFF, the same results are achieved with or without
hierarchical sampling, i.e. with a single coarse or a coarse
and fine MLPs. For these experiments, we therefore only
use a single MLP, since it decreases the training time.
Depth parametrization: On the DTU and Replica
datasets, we sample the 3D points along the ray linearly in
metric space, between the pre-defined near and far plane
[tn, tf ]. On LLFF however, we follow [11] and sample
points along each ray linearly in the inverse depth (dispar-
ity) space, where the lower and upper bounds are 1/tn = 1
and 1/tf = 0.05 respectively.

A.2. Correspondence prediction

To predict the matches relating the input image pairs, we
use a recent state-of-the-art dense correspondence regres-
sion network, in particular PDC-Net [19]. It predicts for
each pixel the conditional probability density of the flow
vector given the input image pair. In practice, this translates
to predicting the mean flow vector for each pixel, which cor-
responds to the match, and a confidence value. As the confi-
dence value, we use the PR operator [19], which represents
the probability that the predicted flow vector is within a cer-
tain radius of the true match. For more details, we refer the
reader to the PDC-Net publication [19]. We show examples
of dense matches estimated by PDC-Net in Fig. 1.
Matches selection: We only apply the multi-view cor-
respondence loss (Sec. 4.1 of m.p.) on correspondences
which are predicted confidently, i.e. for which PR is above a
certain threshold PR > γ. In practice, we choose γ = 0.95.
We optionally also further filter the correspondences by
keeping only the ones that are mutually consistent, i.e. for
which the cyclic consistency is below 1.5 pixels.

1



Source Target

Warped source toward 
target, according to 

predicted dense 
correspondences

Confident matches (in 
yellow)

Figure 1. Dense matches and associated confidence predicted by
PDC-Net [19] on pair examples of the LLFF, DTU, and Replica
datasets. PDC-Net predicts the dense correspondences relating
the target to the source. In the 3rd column, we show the source
(1st column) warped towards the target (2nd column), according
to those predicted correspondences. The warped source (3rd col-
umn) should resemble the target (2nd column). The correspon-
dences deemed reliable by PDC-Net are highlighted in yellow in
the last column.

A.3. Training details

Here, we describe the training hyper-parameters used in
our experiments.

Staged training: As explained in Sec. 4.3 of the main pa-
per, our joint pose-NeRF training is split into two stages. In
the first one, the pose estimates are jointly trained with the
coarse MLP, while in the second one, the pose estimates are
frozen and both coarse and fine MLPs are trained. The first
training stage accounts for 30% of the total training itera-
tions.

We compute the matches between all-to-all views at the
beginning of the training. At each iteration, the following
procedure takes place. We sample x random pixels from
all the training images, on which we apply the photomet-
ric loss (eq. 7 of m.p.). We also sample an image pair and
apply the multi-view correspondence loss (Sec. 4.1 of m.p.)
on a random subset of 1024 matches. For the depth con-
sistency loss (Sec. 4.1 of m.p.), we sample a training view
Ii associated with camera P̂i, find the closest other training
view (according to current pose estimates), and compute an
”unknown” camera pose Pun as an interpolation of the two.
We then randomly sample 1024 pixels in the training view
Ii, for which we compute the depth consistency loss.

Coarse-to-fine positional encoding: For all datasets, we
use the following scheme for the coarse-to-fine positional
encoding of [11] (Sec. 4.3 of m.p.). When jointly refining
the poses and training the NeRF, we linearly adjust the fre-
quency width of the positional encoding from 40% to 70%
of the training iterations. This means that for 40% of the

training, there are no positional encodings applied to the
3D points and the ray directions. This mostly corresponds
to when the camera poses are optimized.

When the input poses are fixed, we instead adjust the
positional encoding from 10% to 50% of the training iter-
ations. This is because the goal of the coarse-to-fine posi-
tional encoding is in that case to prevent overfitting at the
early stages of training.

Training schedule with 3 input views: When the poses
are fixed, we train for 50K iterations on DTU and Replica,
and for 70K iterations on LLFF. For the joint pose-NeRF
refinement, we instead train for 100K iterations on all
datasets.

Training for longer (i.e. 100K iterations) with fixed
ground-truth poses leads to similar or worse results than 50
or 70K iterations since the network starts to heavily overfit
to the provided few (3) training images.

Training schedule with 6 input views: When the poses
are fixed, we train for 100K iterations on DTU and Replica,
and for 140K iterations on LLFF. For the joint pose-NeRF
refinement, we instead train for 150K iterations on DTU and
Replica, and 170K on LLFF.

Training schedule with 9 input views: When the poses
are fixed, we train for 150K iterations on DTU and Replica,
and for 200K on LLFF. For the joint pose-NeRF refinement,
we instead train for 200K iterations on DTU and Replica,
and 220K on LLFF.

Depth range: Each dataset provides a depth range [tn, tf ]
within which the discrete depth values are sampled. When
the initial poses are noisy, however, the provided range
might not be sufficient to cover the scene. This is for exam-
ple the case when we add 15% of noise to the ground-truth
poses. For the joint pose-NeRF training, we therefore use a
modified depth range [(1− ε)tn, (1 + ε)tf , where ε = 0.3.

Loss weighting: Our final loss formulation is provided
in Sec. 4.3 of m.p.. We set the weights λc and λd associ-
ated with respectively the multi-view correspondence loss
(Sec. 4.1 of m.p.) and the depth consistency loss (Sec. 4.2
of m.p.) to λc = 10−3 and λd = 10−3.

The intuition behind the weight λc is that the multi-view
correspondence loss should have a magnitude in the same
range as the photometric loss (eq. 7 of m.p.) since it is
the main driving force of the pose optimization at the early
stages of training. The correspondence prediction is nev-
ertheless prone to errors. After the poses have converged,
it can lead to errors in the learned geometry. In particular,
if the weight of the multi-view correspondence loss is too
high, the NeRF model can learn a wrong geometry, which
is consistent with the wrong correspondences, even when it
violates the photometric loss. To account for that, we grad-
ually halve the weights λc every 10K iterations, after the
poses are frozen. This enables the photometric signal to
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gradually gain more and more importance, thus correcting
possible errors in the learned geometry. When the poses are
fixed to ground truth, we also halve the weights λc every
10K iterations, starting from the beginning of the training.

As for the weight λd, the idea is that the depth consis-
tency loss should account for less than the multi-view cor-
respondence loss. The reason is that the latter ensures the
model learns an accurate geometry while the former makes
sure it is consistent from any viewing directions.

Only on DTU with fixed ground-truth poses, we find it
beneficial to set λc = 10−4 and λd = 10−3 instead. We
believe that a larger weight can have a negative impact as it
amplifies possible errors in the correspondence predictions,
which are reverberated on the learned scene geometry.
Pose parametrization: As in BARF [11], we optimize the
world-to-camera transformation matrices. For the camera
position, we simply adopt a 3D embedding vector in Eu-
clidean space, denoted as t ∈ R3, which we can directly up-
date throughout the optimization. However, directly learn-
ing the rotation offset for each element of a rotation matrix
would break the orthogonality of the rotation matrix.

The widely-used representations such as quaternions and
Euler angles are discontinuous. Following [10], we adopt
the 6-vector representation [28]. In particular, we use and
optimize a continuous embedding vector r ∈ R6 to repre-
sent 3D rotations, which is more suitable for learning. Con-
cretely, given a rotation matrix R = [a1 a2 a3] ∈ R3×3,
we compute the rotation vector r by dropping the last col-
umn of the rotation matrix.

From the 6D pose embedding vector r, we can then re-
cover the original rotation matrix R using a Gram-Schmidt-
like process, in which the last column is computed by a gen-
eralization of the cross product to three dimension [28]. It
is formulated as a function f , which takes as input r =
[aT1 ,a

T
2 ] and enables to recover the full rotation matrix, as

follows,

R = f

 |r
|

 =

 | | |
b1 b2 b3

| | |

 , (1)

where b1,b2,b3 ∈ R3 are b1 = N(a1), b2 = N(a2−(b1·
a2)b1), and b3 = b1 × b2, and N(·) denotes L2 norm. At
every iteration, the estimates of the rotation and translation
parameters R̂w2c and t̂w2c are updated as,

R̂w2c = f(r̂w2c
0 + ∆r), t̂w2c = tw2c

0 + ∆t .

Here, r̂w2c
0 and tw2c

0 denote the initial (noisy) camera rota-
tion and translation parameters.
Hyper-parameters used for DTU: We use the Adam op-
timizer to optimize the network weights and the camera
poses. For the network, we use an initial learning rate of
5 × 10−4, which is exponentially decreased to 1 × 10−4

throughout the training. For the camera poses, we instead
use an initial learning rate of 1×10−3 decaying to 1×10−4.
We resize the images to 300 × 400 and randomly sample
1024 pixel rays at each optimization step for the photomet-
ric loss (eq. 7 of m.p.).

Hyper-parameters used for LLFF: We use the Adam op-
timizer with an initial learning rate of 1 × 10−3 exponen-
tially decreased to 1× 10−4 throughout the training, for the
network. For the camera poses, we instead use an initial
learning rate of 3× 10−3 decaying to 1× 10−5. We resize
the images to 378 × 504 and randomly sample 2048 pixel
rays at each optimization step for the photometric loss (eq.
7 of m.p.).

For joint pose-NeRF optimization on LLFF, we found in
beneficial to only add the multi-view correspondence loss
and the depth consistency loss after 1K iterations of train-
ing. This means that for the first 1K iterations, only the
photometric signal (eq. 7 of m.p.) is used. This is because
for some scenes, applying the multi-view correspondence
loss from the beginning can lead to the background being in
front of the foreground. Applying only the photometric loss
at the very beginning of the training avoids this artifact. Our
additional losses can then drive the poses and the geome-
try correctly. Moreover, we found that for joint pose-NeRF
optimization on LLFF, the same results are achieved with
or without hierarchical sampling. For these experiments,
we therefore only use a single MLP, since it decreases the
training time.

Hyper-parameters used for Replica: We use the same
training hyper-parameters as for DTU. That is, for the net-
work we use the Adam optimizer with an initial learn-
ing rate of 5 × 10−4 which is exponentially decreased to
1 × 10−4 throughout the training. For the camera poses,
we instead use an initial learning rate of 1× 10−3 decaying
to 1 × 10−4. We resize the images to 360 × 600 and ran-
domly sample 1024 pixel rays at each optimization step for
the photometric loss (eq. 7 of m.p.).

COLMAP: We run COLMAP [16] using the default pa-
rameters, with some exceptions. As recommended in the
official documentation to better handle few images with a
wide baseline, we reduce the minimum triangulation an-
gle. We also enable the triangulation of two-view tracks,
which can in rare cases improve the stability of sparse im-
age collections by providing additional constraints in the
bundle adjustment. To increase the number of matches, we
use the more discriminative DSP-SIFT features instead of
plain SIFT and also estimate the affine feature shape. Fi-
nally, we enable guided feature matching. We experiment
with different pixel projection thresholds for the PnP pose
estimation (default is 12) but see little impact on the initial
pose registration results.

Since COLMAP often fails in the sparse-view scenario,
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we replace the feature matching of the standard COLMAP
with better and more recent matching approaches. As ref-
erence implementation, we use the HLOC toolbox [15],
which we modify to fit our needs. We try to use Super-
Point [7] and SuperGlue [14], which has become the de-
facto state-of-the-art sparse matching approach. As an alter-
native, we also use PDC-Net matches [19], a state-of-the-art
dense matching approach. Note that we also use the latter
to establish the correspondences between the training im-
ages in our approach SPARF. When using SuperPoint and
SuperGlue, we set all default parameters. For the Super-
Glue model, we use the indoor weights since both Replica
and DTU scenes are taken indoors. We also set the default
settings for PDC-Net.

Additional runtime: The multi-view correspondence loss
and depth consistency objective add a factor of around 1.5 to
the optimization time, regardless of the number of views. To
predict the matches, PDC-Net [19] runs at 10fps on 300 ×
400 images.

A.4. Baselines

BARF: We use the published code base for experiments
using BARF.

SCNeRF: We use the official code base to obtain the im-
plementation of the ray distance re-projection loss (named
projected ray distance in [10]), which we integrate into our
code. In the original paper, the projected ray distance is
scaled with a weight λ = 10−4. We kept this weighting for
the LLFF experiments. However, we found that increasing
this weight to λ = 10−1 leads to much improved results on
the DTU and Replica datasets. The projected ray distance
loss relies on extracted correspondences between the views.
For fairness, we use PDC-Net [19] correspondences, i.e. the
same matches that we rely on in our multi-view correspon-
dence loss (Sec. 4.1 of m.p.).

PixelNeRF: For evaluation results, we run the provided
pre-trained model on the official code base.

DS-NeRF: We use the official code base to obtain the im-
plementation of the depth loss, which we integrate into our
code base. For the results on DTU with fixed ground-truth
poses, we report the results from the publication. Neverthe-
less, we were unable to reproduce them using the official
code base, where the configuration files for DTU are not
released. We suspect that the authors used a ’trick’ in the
NeRF architecture to prevent heavy overfitting, e.g. for ex-
ample reducing the positional encoding frequency. The re-
sults provided in the original publication for LLFF are com-
puted using a different train/test split. We therefore re-train
on our train/test splits using the released configuration files.

B. More Details on Datasets and Metrics
In this section, we provide details about the evaluation

datasets and metrics.

B.1. Datasets

LLFF: As image resolution, we resize the images to 1/8th

of their original size, resulting in images of size 378× 504.
As stated in the main paper (Sec. 5.1 of m.p.), we follow
community standards [12] and use every 8th image as the
test set. We sample the training views evenly from the re-
maining images.
DTU: Following previous works [6, 13], we adhere to the
evaluation protocol from PixelNerf and use the following
15 scan IDs as the test set: 8, 21, 30, 31, 34, 38, 40, 41,
45, 55, 63, 82, 103, 110, 114. The following image IDs
(starting with “0”): 25, 22, 28, 40, 44, 48, 0, 8, and 13
are used as input. For the 3 and 6 input scenarios, we use
the first 3/6 image IDs, respectively. For evaluation, the re-
maining images are used with the exception of the follow-
ing image IDs due to wrong exposure: 3, 4, 5, 6, 7, 16, 17,
18, 19, 20, 21, 36, 37, 38, 39. We use an image resolution
of 300 × 400. Following [13], we additionally evaluate all
methods with the object masks applied to the rendered im-
ages. The object masks are obtained from [13, 23]. This is
because, in most applications, it is more important to ren-
der the object of interest with high quality, rather than the
background. Applying the foreground mask to the rendered
images thus avoids penalizing methods for incorrect back-
ground predictions, regardless of the quality of the rendered
object of interest.
Replica: We use the following 7 scenes as the test set:
room0, room1, room2, office0, office1, office2, and office3.
Each scene features a video of an indoor room, with be-
tween 1500 to 3000 frames. To create a realistic sparse-
view scenario, where only few wide-baseline images per
scene are available, we sub-sample every kth frame, from
which we randomly select a triplet of consecutive training
images. Because each scene has a different frame rate, we
adapt the sampling rate k to each scene individually. It is
chosen such as each sampled image has a minimum of 20%
covisible regions with another selected view. The exact
sampling parameters will be included in the released code.
We use an image resolution of 340× 600.

B.2. Metrics

Alignment: When refining the camera poses, we evalu-
ate the quality of registration by globally pre-aligning the
optimized poses to the ground truth ones. This is neces-
sary because both the scene geometry and camera poses are
variable up to a 3D similarity transformation. The standard
procedure [11, 22] is to align the two sets of pose trajec-
tories (optimized and ground-truth) globally with a Sim(3)
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transformation using Umeyama algorithm [20] in an ATE
toolbox [27]. Nevertheless, we found this strategy to give
very unstable and unreliable results when the trajectory con-
tains very few views (i.e. less than 9), which is the scenario
we are focusing in this paper.

As a result, we perform the alignment in a RANSAC-
inspired process. We sample every possible pair of cam-
eras in one set, and compute the Sim(3) transformation
(scale/rotation/translation) relating it to the same camera
pair in the other trajectory. This gives us a set of pos-
sible Sim(3) transformations relating the optimized to the
ground-truth trajectories. We then keep as global Sim(3)
transformation the one leading to the lowest average cam-
era alignment error. This process is done for the alignment
when less than nine input views are available. Otherwise,
we use the standard Umeyama algorithm [20].

Pose registration: After the optimized poses are aligned
with the ground-truth ones, we can compute pose registra-
tion metrics. In particular, we report the average rotation
and translation errors. The rotation error |Rerr| is computed
as the absolute value of the rotation angle needed to align
ground-truth rotation matrix R with estimated rotation ma-
trix R̂, such as

Rerr = cos−1Tr(R
−1R̂)− 1

2
, (2)

where operator Tr denotes the trace of a matrix. The
translation error Terr is measured as the Euclidean distance∥∥∥T̂ − T∥∥∥ between the estimated T̂ and the ground-truth po-
sition T . Note that on all datasets, the positions of the poses
are not in metric space, such that the translation error has
no units.

Novel-view rendering: To evaluate the quality of novel
view synthesis while being minimally affected by cam-
era misalignment, we transform the test views to the co-
ordinate system of the optimized poses by applying the
scale/rotation/translation from the alignment analysis. To
evaluate view synthesis in that case, we follow previous
works [11, 22, 24] and run an additional step of test-time
photometric optimization on the trained models to factor out
the pose error from the view synthesis quality. In essence,
it is a more fine-grained gradient-driven camera pose align-
ment which minimises the photometric error on the synthe-
sised image, while keeping the NeRF model fixed. This
test-time photometric optimization is run in experiments
where the poses are refined. For fairness, we also use it
in experiments where we fix the initial noisy poses, e.g.
obtained by COLMAP [16], to differentiate the novel-view
rendering quality from the initial pose error.

To evaluate the view-synthesis performance, we report
the mean Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [21], and the Learned Perceptual

Figure 2. Rotation and translation errors versus the number of
input views on a scene of the DTU dataset [9]. The standard
COLMAP [16] fails to estimate initial poses for each number of
input views, including relatively high numbers (> 20). Failing in
that case means that COLMAP does not find a pose for at least
one image of the set. COLMAP with better sparse matches (Su-
perPoint and SuperGlue [7, 14]) performs a lot better. Neverthe-
less, for very few images (< 9), the estimated poses are noisy,
which can drastically impact the quality of the trained NeRF. Our
approach SPARF can successfully refine those poses in the sparse-
view regime, and consequently, train a better-performing NeRF.
Also, note that the quality of our pose refinement approach SPARF
stays constant when increasing the number of input images (> 9).
It consistently outperforms COLMAP-SP-SG in that regime as
well.

Image Patch similarity (LPIPs) metric [26], which estimates
the distance between an image pair in a learned feature
space.

For the depth evaluation, we first multiply the predicted
depth with the scale from the alignment (since the optimized
scene is variable up to a 3D similarity), such that it is in the
same range than the ground-truth depth. We then compute
the absolute difference between the predicted and ground-
truth depths, averaged over the valid ground-truth depth ar-
eas.

C. Additional Method Analysis

In this section, we present additional analyses of the pro-
posed approach SPARF. We first look at the degradation
faced by COLMAP [16] when reducing the number of in-
put views. We also analyze the robustness of our approach
SPARF to different pose initialization, and provide insights
into failure cases. Additionally, we look at the impact of
using different correspondence predictors and the influence
of the quality of the predicted matches. Finally, we present
additional ablation studies.
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(A) Varying noise in rotation

(B) Varying noise in translation

(C) Varying noise in rotation and translation

Figure 3. Pose registration error and PSNR obtained by BARF and our SPARF for different levels of initial noise. This experiment is
performed on one scene of the DTU dataset, considering 3 input views. Rotation errors are in degree and translation errors are multiplied
by 100. Results of PSNR (↑) are computed by masking the background.

C.1. Performance of COLMAP when reducing the
number of views

Here, we analyze the performance of COLMAP [16]
for different numbers of input views. In Fig. 2, we plot
the rotation and translation errors obtained by the standard
COLMAP, COLMAP with SuperPoint-SuperGlue matches
and our joint pose-NeRF refinement approach SPARF, ver-
sus the number of input views. Even for a relatively high
number of input views (> 20), the standard COLMAP fails
to estimate initial poses. This is because the images show
significant viewpoint variations. Replacing the matches
with those predicted by SuperPoint and SuperGlue [7, 14]
(COLMAP SP-SG) leads to much better results. Neverthe-

Figure 4. Failure case example of our approach SPARF. The ob-
ject, i.e. the pumpkin, is almost fully symmetric with many ho-
mogeneous surfaces. The correspondence network fails to extract
reliable correspondences relating the input views. As a result, our
approach is unable to refine the noisy initial poses.

less, for very few images (< 9), it is very challenging to
estimate high-accuracy poses. COLMAP SP-SG predicts
initial poses with a rotation error between 2 and 4◦, and a
translation error comprised between 5.0 and 17.5. Train-
ing a NeRF with such noisy initial poses results in a drastic
drop in performance compared to training with perfect input
poses. Our approach SPARF can successfully refine those
initial poses while training the NeRF. As a result, the final
optimized poses have much lower rotation and translation
errors. It consequently leads to a better-performing NeRF
model.

C.2. Robustness to pose initialization and failure
cases

Robustness to pose initialization: We next investigate the
robustness of our joint pose-NeRF refinement approach to
different levels of initial noisy poses. For this experiment,
our approach SPARF only uses our multi-view correspon-
dence loss objective (Sec. 4.1 of m.p.), without our depth
consistency loss (Sec. 4.2 of m.p.) nor our staged training
(Sec. 4.3 of m.p.). We create the noisy initial poses by syn-
thetically perturbing the ground-truth poses with different
levels of additive Gaussian noise. We present results on a
randomly sampled scene of DTU in Fig. 3. We investigate
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Over all scenes Over only correctly registered scenes
Pose registration Novel-view synthesis Pose registration Novel-view synthesis

Nbr. corr.
Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE↓ sc. (/15) Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE↓

BARF 10.3 51.5 10.7 (9.8) 0.43 (0.62) 0.59 (0.36) 1.9 2 2.56 9.23 16.6 (17.4) 0.66 (0.76) 0.28 (0.18) 0.29
SCNeRF [19] 3.44 16.4 12.0 (11.7) 0.45 (0.66) 0.52 (0.30) 0.85 10 1.06 4.42 12.1 (12.6) 0.51 (0.68) 0.47 (0.28) 0.80

SPARF* (PDC-Net) 1.85 5.5 16.0 (17.8) 0.68 (0.81) 0.28 (0.14) 0.13 14 0.26 0.6 16.8 (19.1) 0.69 (0.81) 0.25 (0.12) 0.08
SPARF* (SP-SG) 5.95 19.24 14.8 (16.1) 0.64 (0.79) 0.36 (0.18) 0.19 11 0.55 2.05 17.0 (19.1) 0.70 (0.80) 0.24 (0.13) 0.09

Table 1. Performance of our joint pose-NeRF training, when using different pre-trained correspondence networks. The results are computed
on DTU [9] with initial noisy poses (3 views). We simulate noisy poses by adding 15% of random noise to the ground-truth poses. Here,
SPARF* indicates that we only use the combination of the photometric loss with our multi-view correspondence objective (Sec. 4.1 of
m.p.), without including our depth consistency objective (Sec. 4.2 of m.p.) nor our staged training (Sec. 4.3 of m.p.). Rotation errors are
in degree and translation errors are multiplied by 100. Results in (·) are computed by masking the background. Nbr. corr. sc. designates
the number of correctly registered scenes. We consider a scene to be correctly registered when the average rotation is below 10◦ and the
average translation is below 10. Note that for SCNeRF [10], we use PDC-Net [19] correspondences.

Rot. (◦) ↓ Trans. (×100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓
BARF [11] 2.04 11.6 17.47 0.48 0.37
SCNeRF [10] 1.93 11.4 17.10 0.45 0.40

SPARF* (PDC-Net) 0.53 2.8 19.50 0.61 0.32
SPARF* (SP-SG) 0.53 3.0 19.48 0.60 0.32

Table 2. Performance of our joint pose-NeRF training, when us-
ing different pre-trained correspondence networks. As in Tab. 1
for DTU, the evaluation is here performed on the forward-facing
dataset LLFF [17] (3 views) starting from initial identity poses.
Here, SPARF* indicates that we only use the combination of the
photometric loss with our multi-view correspondence objective
(Sec. 4.1 of m.p.), without including our depth consistency objec-
tive (Sec. 4.2 of m.p.) nor our staged training (Sec. 4.3 of m.p.).

perturbing only the rotation matrix, only the translation vec-
tor, or both in respectively (A), (B), and (C). As a reference,
we also include results of BARF [11]. Our approach SPARF
can handle up to 20% of noisy rotations, which corresponds
to about 20◦. Interestingly, our SPARF is extremely robust
to translation noise, successfully registering poses with up
to 45% translation noise. When both rotation and transla-
tion noises are included, our method is robust to 20% of
noise, the rotation being the limiting factor.

Failure cases: Our approach SPARF depends on the qual-
ity of the predicted correspondences. If only too few or in-
accurate matches can be extracted between the input views,
the joint pose-NeRF training will likely fail.

It is particularly difficult to predict reliable correspon-
dences for (almost) symmetric objects or for scenes contain-
ing many homogeneous surfaces. Such a challenging ex-
ample is presented in Fig. 4, which corresponds to ’scan30’
of the DTU dataset. The depicted pumpkin is almost sym-
metric and has mostly uniform surfaces. On these images,
the pre-trained correspondence network PDC-Net [19] does
not predict any reliable matches. Note that the alternative
matching approach SuperPoint-SuperGlue [7,14] is also un-
able to extract correspondences in that case.

C.3. Impact of different correspondences

Our multi-view correspondence loss (eq. 8 of m.p.)
(Sec. 4.1 of m.p.) relies on a pre-trained correspondence
network to predict matches between the training views. As
stated in the main paper, while we use PDC-Net [19], any
hand-crafted or learned matching network could be used.
We here compare using the dense correspondence regres-
sion network PDC-Net [19] with the state-of-the-art sparse
matcher SuperGlue [14]. In combination with the Super-
Glue matcher, we use the SuperPoint [7] detector and de-
scriptor.

In Tab. 1, we present results on DTU, of our joint pose-
NeRF refinement approach, trained using the multi-view
correspondence objective (Sec. 4.1 of m.p.) with these
two alternative matching methods. As a reference, we also
include results of BARF [11] and SCNeRF [10]. Sparse
matchers particularly struggle to detect repeatable key-
points and predict reliable matches on images with repeti-
tive structures and homogeneous surfaces. Dense matching
approaches are more robust to these conditions. As a result,
SP-SG finds an insufficient number of matches on 4 scenes
out of 15, compared to 1 scene out of 15 for dense cor-
respondence network PDC-Net. When matches are unreli-
able or in insufficient number, our joint pose-NeRF train-
ing is likely to fail, since our multi-view correspondence
loss (eq. 8 of m.p.) relies on the predicted correspondences.
As a result, when considering all scenes, SPARF* with SP-
SG obtains a worse pose registration and novel-view syn-
thesis performance than SPARF* with PDC-Net. Note nev-
ertheless that the novel-view synthesis results are still sig-
nificantly better than that of BARF and SCNeRF. When tak-
ing the average only over the ”correctly registered scenes”
instead, SPARF* with PDC-Net or SP-SG matches leads to
similar pose registration and novel-view synthesis quality.

In Tab. 2, we present the same comparison, on the LLFF
dataset. Using PDC-Net or SP-SG matches results in a sim-
ilar performance.
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Figure 5. Evaluation of SPARF* on one scene of DTU, with different levels of Gaussian noise added to ground-truth image matches. Here,
SPARF* indicates that we only use the combination of the photometric loss with our multi-view correspondence objective (Sec. 4.1 of
m.p.), without including our depth consistency objective (Sec. 4.2 of m.p.) nor our staged training (Sec. 4.3 of m.p.).

Impact of noisy matches: As an additional experiment,
we added different levels of Gaussian noise to ground-truth
matches on DTU and trained our joint pose-NeRF refine-
ment approach SPARF * using those matches. The goal
is to analyze the robustness of SPARF * to noisy corre-
spondences. We conducted this experiment on one scene
of DTU, with 3 input views associated with noisy poses,
and present the results in Fig. 5. As previously, we consider
15% of initial additive Gaussian noise. SPARF is robust to
quite noisy matches (standard-deviation up to 6 pixels) but
sees its performance drop with highly erroneous correspon-
dences.

C.4. Additional ablation study

Ablation study for joint pose-NeRF refinement: In
Tab. 2 of the main paper, we ablated key components of
our approach, considering fixed ground-truth poses on the
DTU dataset. Here, we ablate our approach when refin-
ing initial noisy poses along with training the NeRF model.
As previously, we consider 15% of initial additive Gaussian
noise. We present results in the top part of Tab. 3. From
(I) to (II), adding our multi-view correspondence loss (eq. 8
of m.p.) leads to drastically better pose registration than
training with only the photometric loss (eq. 7 of m.p.) (I).
The rendering quality also radically improves. This is in
part due to the better pose registration, which is necessary
to obtain a decent rendering quality. It is also enabled by
the fact that our multi-view correspondence loss not only

Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
I Photo. (eq. 7 of m.p.) 10.3 51.5 10.7 (9.8) 0.43 (0.62) 0.59 (0.36) 1.9
II + MVCorr (eq. 8 of m.p.) 1.85 5.5 16.0 (17.8) 0.68 (0.81) 0.28 (0.14) 0.13
III + Staged training 1.81 5.0 17.58 (18.62) 0.71 (0.82) 0.26 (0.13) 0.13
IV + DCons (eq. 9 of m.p) 1.81 5.0 17.74 (18.92) 0.71 (0.83) 0.26 (0.13) 0.12

II Fully joint pose-NeRF 1.85 5.5 16.0 (17.8) 0.68 (0.81) 0.28 (0.14) 0.13
III Staged training (Sec. 4.3 of m.p.) 1.81 5.0 17.58 (18.62) 0.71 (0.82) 0.26 (0.13) 0.13
V Restart NeRF 1.84 5.3 17.80 (19.07) 0.72 (0.83) 0.25 (0.12) 0.12

Table 3. Ablation study on DTU [9] (3 views) with noisy initial
poses. In the top part, from (I) to (IV), we progressively add (+)
each component. In the bottom part, we compare multiple training
schedules for the joint pose-NeRF training. The depth consistency
loss (Sec. 4.2 of m.p.) is then not included. Rotation errors are in
degree and translation errors are multiplied by 100. Results in (·)
are computed by masking the background.

drives the camera poses but also applies direct supervision
on the rendered depth, enforcing it to be close to the surface.
As such, it enables learning an accurate scene geometry. In
(III), we introduce our staged training (Sec. 4.3 of m.p.),
which is composed of two parts. In the first stage, we re-
fine the poses while training the coarse network F cθ . In the
second part, we freeze the pose estimates and train both the
coarse and fine networks F cθ and F fθ . Comparing (II) to
(III), we observe that introducing this second stage leads to
better PSNR and SSIM metrics. This is because the fine net-
work can learn a sharp geometry benefiting from the frozen,
registered camera poses and the pre-trained coarse network.
On the other hand, when jointly training the camera poses
and both coarse and fine MLP (II), the learned scene often
has a slightly blurry surface due to the exploration of the
pose space. Finally, further including our depth consistency
objective (Sec. 4.2 of m.p.) slightly improves the rendering
performance, leading to the best results overall.

Comparison of different training schedules: In the bot-
tom part of Tab. 3, we further compare different training
schedules for joint pose-NeRF training. As previously ex-
plained, jointly training the poses with both the coarse and
fine MLPs in (II) can lead to blurry surfaces. As demon-
strated in (III), our staged training (Sec. 4.3 of m.p.) largely
solves this problem, leading to better rendering quality.
Nevertheless, it is worth noting that the best results are ob-
tained with the NeRF restarting approach corresponding to
(V). In (V), the NeRF is first jointly trained with the poses.
Once the poses have converged, the optimized pose esti-
mates are frozen and both coarse and fine MLPs are re-
initialized. Both MLPs are then trained from scratch, con-
sidering fixed optimized poses. This approach can remove
some of the artifacts learned during the pose optimization,
that might still be present in our staged training (III). This
restarting approach was also found to be the best alternative
in [22].

Impact of visibility mask in depth consistency loss: In
Sec. 4.2 of the main paper, we introduce our depth con-
sistency loss. However, the proposed loss is only valid in
pixels of the training views for which the projections in the
virtual view are not occluded by the reconstructed scene,
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seen from the virtual view. We therefore use a visibility
mask, following the same formulation as [5]. We ablate the
impact of this visibility mask in the depth consistency loss
formulation in Tab. 4. We observe that removing the visibil-
ity mask leads to a notable drop in performance in PSNR,
probably because the NeRF model learns surfaces that are
actually occluded, leading to artifacts in the geometry and
therefore the renderings.

D. Additional Results with Initial Noisy Poses

In this section, we provide additional results considering
initial noisy poses. In particular, we experiment with differ-
ent initialization schemes. We also use different numbers
of input views and present extensive qualitative results. Fi-
nally, we experiment with training considering all available
training views (i.e. 25), instead of a subset.

D.1. Results on the DTU dataset

Here, we present additional results for our joint pose-
NeRF refinement approach SPARF, evaluated on the DTU
dataset [9]. In the main paper, we showed results when
considering three input views and starting from initial
noisy poses, created by synthetically perturbing ground-
truth poses. Here, we first evaluate starting from an alter-
native initialization scheme, in particular initial poses ob-
tained by COLMAP [16]. Moreover, we also evaluate for
different numbers of input views, in particular 6 or 9. We
also show multiple qualitative comparisons for the 3-view
setting.

Initialization with COLMAP: On the DTU input images,
COLMAP [16] mostly fails when reducing the number of
input views to 3 (see Fig. 2). As a result, to obtain the initial
camera pose estimates, we experiment with COLMAP run
with matches predicted by SuperPoint and SuperGlue [14]
(SP-SG) or PDC-Net [19]. Both COLMAP-SP-SG and
COLMAP-PDCNet fail to obtain initial pose estimates on
one out of the 15 scenes composing the test set (’scan30’,
see Fig. 4). We thus present results on the remaining 14
scenes in Tab. 5. In the middle part of the table (F), we
fix the initial poses, which we consider as ”pseudo-ground-
truth”, and train the NeRF model. In the bottom part (R), we
instead compare multiple joint pose-NeRF refinement ap-
proaches. Finally, in the top part (G), we present the results

PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
MVCorr (eq. 8 of m.p.) 18.13 (20.81) 0.77 (0.87) 0.22 (0.10) 0.10
+ DCons (eq. 9 of m.p.) 18.30 (21.01) 0.78 (0.87) 0.21 (0.10) 0.08

Table 4. Impact of the visibility mask for our depth consistency
loss (Sec. 4.2 of the main paper). Results are computed on the
DTU dataset (3 views), with fixed ground-truth poses. Results in
(·) are computed by masking the background. All networks use
the coarse-to-fine PE [11].

C) SPARF (Ours)

F) BARFE) RegBARF

D) SCNeRF

B) Initial camera poses
Perturbed/optimized 
camera poses

Ground-truth camera 
poses

Translational error

A) Input views

Figure 6. Initial and optimized poses on one scene of the DTU
dataset, given 3 input views.

of SPARF, trained considering fixed ground-truth poses for
reference.

SP-SG sometimes struggles with homogeneous surfaces,
where it is difficult to extract repeatable keypoints. It
leads to an initial rotation and translation error of respec-
tively 1.34◦ and 6.84. PDC-Net, which can heavily rely on
smoothness properties when predicting dense matches, per-
forms better on homogeneous regions. It results in slightly
better initial poses, i.e. with an initial rotation and transla-
tion error of 0.75◦ and 3.87 respectively.

For both initialization schemes, the trend is the same.
Considering the COLMAP poses as ”pseudo-ground-truth”
and training the NeRF with fixed poses (part F) leads to sig-
nificantly worse results than when using ground-truth poses
(top part, G), particularly in PSNR and SSIM. This is be-
cause the NeRF learns artifacts caused by the wrong posi-
tioning of the poses. Instead, using our approach to jointly
refine the poses and train the NeRF (R) narrows the gap be-
tween fixed COLMAP poses (F) and the ideal case of fixed
ground-truth poses (G). Note that the latter case of fixed
ground-truth poses is unrealistic in practice. Notably, when
refining the poses, SPARF obtains similar performance in
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Initial COLMAP SP-SG Initial COLMAP PDCNet
Rot: 1.34◦, Trans (×100): 6.84 Rot: 0.75◦, Trans (×100): 3.87

Rot. (◦) ↓ Trans (×100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓ Rot. (◦) ↓ Trans (×100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
G SPARF (Ours) Fixed GT poses 18.56 (20.84) 0.77 (0.86) 0.22 (0.11) 0.08 Fixed GT poses 18.56 (20.84) 0.77 (0.86) 0.22 (0.11) 0.08

F NeRF [12] Fixed poses obtained 8.95 (9.77) 0.30 (0.60) 0.72 (0.38) 1.25 Fixed poses obtained 8.88 (9.66) 0.31 (0.62) 0.73 (0.37) 1.28
DS-NeRF [6] from COLMAP (run w. 11.89 (13.28) 0.46 (0.69) 0.49 (0.25) 0.38 from COLMAP (run w. 11.61 (12.81) 0.46 (0.70) 0.51 (0.25) 0.60
DS-NeRF w. CF PE [6, 11] SP-SG [14] matches) 16.58 (17.58) 0.66 (0.77) 0.29 (0.17) 0.21 PDC-Net [19] matches) 18.10 (19.30) 0.71 (0.80) 0.24 (0.13) 0.12
SPARF (Ours) 17.34 (17.92) 0.68 (0.78) 0.26 (0.14) 0.15 18.42 (19.61) 0.72 (0.82) 0.22 (0.12) 0.12

R BARF [11] 4.90 12.74 13.14 (13.01) 0.52 (0.69) 0.45 (0.25) 0.55 3.5 11.94 14.27 (14.59) 0.56 (0.70) 0.39 (0.23) 0.54
RegBARF [11, 13] 4.3 11.0 14.65 (15.30) 0.6 (0.73) 0.38 (0.22) 0.25 3.71 9.81 15.22 (15.98) 0.60 (0.73) 0.36 (0.22) 0.25
SCNeRF [10] 0.97 3.08 15.94 (16.73) 0.63 (0.75) 0.32 (0.19) 0.43 1.08 3.3 15.94 (16.42) 0.63 (0.75) 0.32 (0.18) 0.43
DS-NeRF [6] 3.7 10.0 13.67 (14.30) 0.54 (0.72) 0.40 (0.22) 0.21 2.66 7.58 16.00 (16.87) 0.63 (0.77) 0.31 (0.17) 0.24
SPARF (Ours) 0.35 0.9 18.39 (19.67) 0.73 (0.82) 0.22 (0.12) 0.09 0.3 0.7 18.52 (20.00) 0.73 (0.83) 0.21 (0.11) 0.08

Table 5. Evaluation on 14 scenes of the DTU dataset (3 views) with initial poses obtained by COLMAP using SP-SG [14] (left) or
PDCNet [19] (right) matches. Note that both approaches fail to obtain the initial poses on one of the pre-defined 15 test scenes (’scan30’),
which we therefore excluded from this evaluation. In the middle part (F), the initial poses are fixed and used as ”pseudo-ground-truth”.
In the bottom part (R), the poses are refined along with training the NeRF. For comparison, in the top part (G), we use fixed ground-truth
poses. All methods in the bottom part (R), which perform joint pose-NeRF training, use the coarse-to-fine PE approach [11] (Sec. 4.3 of
m.p.). Results in (·) are computed by masking the background. The best and second-best results are in red and blue respectively.

3 input views 6 input views 9 input views
Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓ Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓ Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓

BARF [11] 10.33 51.5 10.71 (9.76) 0.43 (0.62) 0.59 (0.36) 1.9 9.20 31.1 14.02 (14.22) 0.54 (0.69) 0.46 (0.27 ) 0.49 8.34 26.72 16.20 (16.38) 0.60 (0.73) 0.38 (0.22) 0.35
RegBARF [11, 13] 11.2 52.8 10.38 (9.20) 0.45 (0.62) 0.61 (0.38) 2.33 9.19 26.63 14.59 (14.58) 0.57 (0.70) 0.44 (0.27) 0.32 5.28 18.51 18.98 (19.08) 0.67 (0.77) 0.29 (0.18) 0.23
DistBARF [2, 11] 11.69 55.7 9.50 (9.15) 0.34 (0.76) 0.67 (0.36) 1.90 8.96 28.85 14.31 (14.60) 0.55 (0.70) 0.43 (0.26) 0.53 7.00 26.42 16.18 (16.27) 0.58 (0.71) 0.37 (0.22) 0.29
SCNeRF [10] 3.44 16.4 12.04 (11.71) 0.45 (0.66) 0.52 (0.30) 0.85 4.10 12.80 17.76 (18.16) 0.70 (0.80) 0.31 (0.18) 0.28 4.76 16.25 18.19 (18.01) 0.69 (0.81) 0.31 (0.17) 0.31
SPARF (Ours) 1.81 5.0 17.74 (18.92) 0.71 (0.83) 0.26 (0.13) 0.12 1.31 2.7 21.39 (22.01) 0.81 (0.88) 0.18 (0.10) 0.09 1.15 2.55 24.69 (25.05) 0.88 (0.92) 0.12(0.06) 0.06

SPARF - No ’scan30’ 0.36 0.8 18.13 (19.53) 0.72 (0.82) 0.22 (0.11) 0.09 0.39 1.05 22.34 (23.16) 0.83 (0.88) 0.14 (0.08) 0.05 0.25 0.8 25.35 (25.86) 0.88 (0.92) 0.10 (0.06) 0.04

Table 6. Evaluation on DTU [9] with different numbers of input views (3, 6, or 9) and considering noisy initial poses. We simulate noisy
poses by adding 15% of Gaussian noise to the ground-truth poses. The results for 3 input views correspond to Tab. 4 of the main paper and
are repeated here for ease of comparison. Rotation errors are in ◦ and translation errors are multiplied by 100. Results in (·) are computed
by masking the background.

LPIPS and depth error compared to the fixed ground-truth
pose version. The lower PSNR and SSIM values indicate
that the NeRF model still learns artifacts during the joint
refinement. Note that this issue can be partially circum-
vented by re-initializing the NeRF model and training from
scratch with fixed poses, once the poses have converged (see
Tab. 3).
Results with 6 and 9 views: In Tab. 4 of the main paper,
we evaluate our proposed approach SPARF for joint pose-
NeRF training, when considering only 3 input views. For
completeness, we here provide results when 6 or 9 input
views are available. As in the 3-view setting, we syntheti-
cally perturb the ground-truth poses by adding 15% of addi-

Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
BARF [11] 2.46 6.72 21.67 (21.71) 0.77 (0.84) 0.21 (0.13) 0.14
SPARF (Ours) 1.0 1.23 24.77 (24.41) 0.85 (0.89) 0.15 (0.10) 0.05

Table 7. Evaluation on DTU, considering all available training
views (25) and initial noisy poses. We simulate noisy poses by
adding 15% of Gaussian noise to the ground-truth poses. It leads
to an initial rotation and translation error of 13.36◦ and 47.87 re-
spectively. Rotation errors are in degree and translation errors
are multiplied by 100. Results in (·) are computed by masking
the background. Also note that some of the training images have
inconsistent illumination, making them unsuitable for the NeRF
training.

tive Gaussian noise. The results are presented in Tab. 6. We
included the results with 3 input views for ease of compari-
son. The trend is similar for 3, 6, or 9 input views. BARF,
RegBARF, and DistBARF struggle to refine the initial noisy
poses, leading to poor novel-view rendering performance.
While increasing the number of views leads to better syn-
thesis quality, it remains drastically lower than the perfor-
mance obtained by our SPARF. SCNeRF performs better
at registering the poses. The rendering quality and learned
geometry are nevertheless much worse than the proposed
SPARF.

With 3, 6, or 9 input views, our SPARF outperforms
all previous works. For completeness, we also provide re-
sults of our approach when excluding one of the scenes,
i.e.’scan30’, on which no correspondences are found. When
excluding this scene, the rotation and translation errors of
the optimized scenes are below 1◦ and 1 (multiplied by
100) respectively. The average novel-view rendering per-
formance is also significantly increased.

Qualitative comparisons: We provide qualitative compar-
isons for the 3-view regime. In Fig. 6, we show the ini-
tial and optimized poses on one scene of DTU. We visually
compare the novel-view renderings (RGB and depth) of our
SPARF, SCNeRF, BARF, and RegBARF in Fig. 8.

Finally, we provide extensive examples of the novel-
view synthesis capabilities of our approach SPARF in
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2 input views 6 input views 9 input views
Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BARF [11] 5.16 37.87 15.06 0.35 0.50 0.25 0.37 23.09 0.72 0.22 0.20 0.34 24.10 0.76 0.20
RegBARF [11, 13] 3.77 28.59 15.94 0.40 0.47 0.48 0.55 22.21 0.68 0.26 0.93 4.2 22.68 0.70 0.26
DistBARF [2, 11] 7.32 110.0 14.06 0.30 0.55 2.38 11.23 18.31 0.52 0.37 2.81 13.41 20.36 0.59 0.34
SCNeRF [10] 4.88 44.27 14.43 0.32 0.51 2.07 8.11 21.82 0.66 0.26 0.47 3.87 22.72 0.70 0.24
SPARF (Ours) 1.54 8.38 17.32 0.47 0.40 0.25 0.32 23.30 0.72 0.23 0.18 0.30 24.12 0.76 0.20

Table 8. Evaluation on LLFF [17] with different numbers of input views (2, 6, or 9) and starting from initial identity poses. The results for
3 input views can be found in Tab. 5 of the main paper. Rotation errors are in ◦ and translation errors are multiplied by 100. The best and
second-best results are in red and blue respectively.

Fig. 9. It produces realistic novel views with accurate ge-
ometry on a large variety of scenes and from many different
viewing directions, given only 3 input views with noisy ini-
tial poses.

Results with all views: For completeness, we evaluate our
joint pose and NeRF training approach SPARF, when many
input views are available. While this is not the goal of this
work, which was specifically designed for the sparse-view
regime, we show here that it can generalize to the many-
view setting. We present results on DTU in Tab. 7. Even in
this setting, our SPARF significantly outperforms baseline
BARF [11] in pose registration and novel-view synthesis
performance. We note that some of the training images have
inconsistent illumination, which were excluded when con-
sidering subsets. Inconsistent illumination can cause prob-
lems when training a NeRF since it relies on the photomet-
ric loss as the primary training signal. This explains why
the PSNR and SSIM values obtained by SPARF with all 25
input views (Tab. 7) are slightly worse than when trained on
only a subset of 9 views (Tab. 6).

D.2. Results on the LLFF dataset

Here, we present additional results for our joint pose-
NeRF refinement approach SPARF, evaluated on the LLFF
dataset [9].

Results with 2, 6 and 9 views: As for DTU [9], we here
evaluate our pose-NeRF refinement approach when 6 or 9
input views are available instead of only 3. For complete-
ness, we also include results when only 2 views are avail-
able.

When considering 2 or 3 input views, BARF struggles
to refine the poses, which impacts its novel-view synthe-

Rot. (◦) ↓ Trans. (x 100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓
BARF [11] 0.85 0.26 25.09 0.77 0.20
SPARF* 0.77 0.23 25.18 0.78 0.20

Table 9. Evaluation on LLFF [17], considering all available train-
ing views and initial identity poses. Here, SPARF* indicates that
we only use the combination of the photometric loss with our
multi-view correspondence objective (Sec. 4.1 of m.p.), without
including our depth consistency objective (Sec. 4.2 of m.p) nor
our staged training (Sec. 4.3 of m.p.).

sis performance. Nevertheless, LLFF represents forward-
facing scenes, for which a limited number of homoge-
neously spread views can cover the majority of the scene.
As a result, for 6 input views and more, the 3D space is
sufficiently constrained for BARF to successfully register
the initial identity poses. In the 6 and 9 view cases, our
approach SPARF and BARF obtain similar performance in
pose registration and novel-view rendering quality.

Interestingly, while adding the depth regularization loss
(RegBARF) to the photometric loss (BARF) helps the pose
registration and novel-view rendering performance in the 2
and 3-view regimes, it is harmful with denser views (6 and
9). Our approach SPARF instead does not negatively im-
pact the performance of BARF in the 6 and 9-view scenar-
ios. Surprisingly, SCNeRF obtains worse registration and
novel-view rendering results than BARF, and consequently
our approach SPARF.

We visualize the initial and optimized poses for one
scene of LLFF in the 3 and 6 views scenario in Fig. 7. Here,
it is visible that even 6 views can cover most of the scene,
which is why BARF performs well even in this sparse-view
regime. In Fig. 10, we visually compare novel-view ren-
derings of SPARF, BARF, RegBARF, and SCNeRF in the
3-view setting. Our approach encodes the scene geometry
more accurately. The RGB renderings also contain fewer ar-
tifacts and blurriness. Finally, we provide examples of the
renderings produced by our approach SPARF on multiple
scenes of LLFF and from different viewpoints in Fig. 11.
Given as few as 3 input views with initial identity poses,
SPARF produces realistic novel-view renderings from many
different viewing directions. It also leads to a geometrically
accurate scene.

Results with all views: For completeness, in Tab. 9 we
compare joint pose-NeRF training approaches BARF and
SPARF, considering all available training views of LLFF,
and starting from identity poses. On this forward-facing
dataset, BARF and SPARF reach a similar performance in
the many-view regime.

D.3. Results on the Replica dataset

We here provide additional evaluation results on the
Replica dataset, with different pose initialization schemes.
We also include more qualitative examples.
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Further analysis on Tab. 6 of the main paper: In Tab. 6
of the main paper, we evaluated multiple approaches on
Replica, with 3 input views and initial poses obtained by
COLMAP [16] with PDC-Net [19] matches. Those initial
poses have an error of 0.39◦ and 3.01 in rotation and trans-
lation respectively. In the bottom part of the table, we show
that SPARF can refine the initial poses to a final rotation
and translation error of 0.15 and 0.76 respectively. While
this might seem like a small improvement in terms of pose
registration, the rendering quality improves a lot between
SPARF with fixed COLMAP poses (F) and SPARF with
pose refinement (R). This is because the provided initial
rotation and translation errors are an average over all the
scenes. Some scenes actually have an initial translation er-
ror of up to 8, which can cause a notable drop in rendering
quality. Refining the poses for those scenes is then particu-
larly beneficial in terms of rendering quality. This explains
the PSNR difference between SPARF in (F) or in (R).

Moreover, some of the baselines show similar rendering
quality despite larger pose differences because they struggle
to learn a meaningful geometry, i.e. they cannot go beyond
a certain PSNR. Finally, rendering scores are overall higher
on Replica compared to other datasets (even for poor pose
registration), because the dataset contains many homoge-
neous surfaces (e.g. wall).

COLMAP initialization w. SP-SG matches: In
the main paper, we compared joint pose-NeRF refine-
ment approaches considering initial poses obtained by
COLMAP [16] run with PDC-Net [19] matches. For com-
pleteness, we here present the same comparison, when
the initial poses are obtained with COLMAP with Super-
Point [7] and SuperGlue [14] matches instead. It corre-
sponds to an initial rotation and translation errors of 2.61◦

and 15.31 respectively. The results are presented in Tab. 10.
Compared to initialization with COLMAP-PDCNet

(Tab 6 of main paper), the same conclusions apply. Com-
paring the top (G) and middle part (F) of Tab. 10, we show
that even a relatively low initial error impacts the novel-
view rendering quality when using fixed poses. In the bot-
tom part (R), our pose-NeRF training strategy SPARF leads
to the best results, matching the accuracy obtained by our
approach with perfect poses (top row, G).

Initial noisy poses: For completeness, we also start from
synthetically perturbed ground-truth poses. In particular, as
previously for DTU, we synthetically perturb the ground-
truth poses with 15% of additive Gaussian noise. It leads to
an initial rotation and translation errors of 15.62◦ and 112
(scaled by 100) respectively. This corresponds to a signif-
icantly noisier setting than starting from COLMAP poses.
Results are presented in Tab. 11. BARF struggles to re-
fine the poses. RegBARF and DistBARF lead to better pose
registration and novel-view synthesis. Here, it is interesting
to note that both regularizations seem to help in learning a

Rot (◦) ↓ Trans (×100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
G SPARF Fixed GT poses 26.43 0.88 0.13 0.39

F NeRF Fixed poses obtained 19.50 0.66 0.41 1.63
DS-NeRF [6] from COLMAP (run w. 21.55 0.74 0.26 0.91
SPARF (Ours) SP-SG [14] matches) 22.18 0.74 0.25 0.93

R BARF [11] 3.23 18.05 19.41 0.68 0.34 0.95
SCNeRF [10] 0.21 1.17 23.67 0.82 0.22 0.83
DS-NeRF 1.01 3.85 24.68 0.83 0.18 0.70
SPARF (Ours) 0.16 0.8 26.80 0.88 0.14 0.36

Table 10. Evaluation on Replica [18] (3 views) with initial poses
obtained by COLMAP [16, 19] with SP-SG [14] matches. The
initial rotation and translation errors are 2.61◦ and 15.31 respec-
tively. In the middle part (F), these initial poses are fixed and used
as ”pseudo-gt”. In the bottom part (R), the poses are refined along
with training the NeRF. For comparison, in the top part (G), we
use fixed ground-truth poses.

more accurate geometry (lower depth error). Indeed, SCN-
eRF, which better registers the poses, still obtains a higher
depth error. Our approach SPARF, which acts on both the
learned scene geometry and the camera poses, significantly
outperforms all others.

Qualitative comparisons: In Fig. 12, we qualitatively
compare SPARF with BARF, DS-NeRF and SCNeRF. Our
approach SPARF produces the best renderings, with sig-
nificantly fewer floaters and blurry surfaces. The learned
scene geometry is also significantly sharper and more ac-
curate, as shown by the depth renderings. This is con-
firmed in Fig. 13, where we present additional renderings
produced by SPARF on all scenes of the Replica dataset.
Note that in all those cases, our approach is only trained
with 3 input views, and noisy input camera poses (obtained
by COLMAP-PDCNet).

E. Additional Results with Fixed GT Poses

In Sec. 5.4 of m.p., we evaluated our approach when con-
sidering fixed ground-truth poses, in the three-input-views
setting. For completeness, we extend this evaluation for the
cases of 6 and 9 input views. This is the same setup as
in [13].

Results on DTU: We present results on DTU in Tab. 12.
Our approach SPARF sets a new state of the art on all met-

Pose Registration Novel View Synthetis
Rot (◦) ↓ Trans (×100) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓

BARF [11] 12.81 39.96 16.39 0.60 0.52 2.3
RegBARF [11, 13] 9.0 29.34 17.05 0.62 0.48 1.11
DistBARF [2, 13] 5.28 20.45 19.82 0.69 0.36 0.68
SCNeRF [10] 2.26 10.37 22.50 0.76 0.27 1.57
SPARF 1.06 6.63 25.57 0.85 0.16 0.45

Table 11. Evaluation on the Replica dataset (3 views) starting from
noisy poses. In particular, the ground-truth poses are synthetically
perturbed with 15% of additive Gaussian noise. This initialization
leads to an initial rotation and translation errors of 15.62◦ and 112
(multiplied by 100) respectively.
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PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
3 6 9 3 6 9 3 6 9 3 6 9

PixelNeRF [25] 19.36 (18.00) 20.46 (19.12) 20.91 (19.56) 0.70 (0.77) 0.75 (0.80) 0.76 (0.81) 0.32 (0.23) 0.30 (0.22) 0.29 (0.21) 0.12 0.12 0.13

NeRF [12] 8.41 (9.34) 17.51 (18.52) 21.45 (23.25) 0.31 (0.63) 0.73 (0.83) 0.85 (0.91) 0.71 (0.36) 0.25 (0.13) 0.14 (0.06) 0.87 0.21 0.08
DietNeRF [8] 10.01 (11.85) 18.70 (20.63) 22.16 (23.83) 0.35 (0.63) 0.67 (0.78) 0.68 (0.82) 0.57 (0.31) 0.35 (0.20) 0.34 (0.17) - - -
RegNeRF [13] 15.33 (18.89) 19.10 (22.20) 22.30 (24.93) 0.62 (0.75) 0.76 (0.84) 0.82 (0.88) 0.34 (0.19) 0.23 (0.12) 0.18 (0.09) - - -
DS-NeRF [6] 16.52 (-) 20.54 (-) 22.23 (-) 0.54 (-) 0.73 (-) 0.77 (-) 0.48 (-) 0.31 (-) 0.26 (-) - - -
SPARF (Ours) 18.30 (21.01) 23.24 (25.76) 25.75 (27.30) 0.78 (0.87) 0.87 (0.92) 0.91 (0.94) 0.21 (0.10) 0.12 (0.06) 0.08 (0.04) 0.083 0.049 0.043

Table 12. Evaluation on the DTU dataset [9], considering fixed ground-truth poses. We present novel-view synthesis results for different
numbers of input views. Results in (·) are computed by masking the background. Results of [1, 3, 8, 13, 25] are from [13]. The best and
second-best results are in red and blue respectively.

PSNR ↑ SSIM ↑ LPIPS ↓
3 6 9 3 6 9 3 6 9

PixelNeRF [25] 7.93 8.74 8.61 0.27 0.28 0.27 0.68 0.68 0.67
SRF [4] 12.3 13.1 13.0 0.25 0.29 0.30 0.59 0.59 0.61
MVSNeRF [3] 17.25 19.79 20.47 0.56 0.66 0.69 0.36 0.27 0.24

PixelNeRF-ft 16.17 17.03 18.92 0.44 0.47 0.54 0.51 0.48 0.43
SRF-ft 17.07 16.75 17.39 0.44 0.44 0.47 0.53 0.52 0.50
MVSNeRF-ft 17.88 19.99 20.47 0.58 0.66 0.70 0.33 0.26 0.24

NeRF [12] 13.61 16.70 18.45 0.28 0.43 0.51 0.56 0.40 0.31
MipNeRF [1] 14.62 20.87 24.26 0.35 0.69 0.81 0.50 0.26 0.17
DietNeRF* [8] 14.94 21.75 24.3 0.37 0.72 0.80 0.5 0.25 0.18
RegNeRF* [13] 19.08 23.10 24.86 0.59 0.76 0.82 0.34 0.21 0.16
DS-NeRF [6] 18.00 21.60 22.84 0.55 0.67 0.71 0.27 0.21 0.19

SPARF (Ours) 20.20 23.35 24.40 0.63 0.74 0.77 0.24 0.20 0.18

Table 13. Evaluation on the LLFF dataset [17], considering fixed ground-truth poses. We present novel-view synthesis results for different
numbers of input views. The top part contains conditional models trained on DTU. In the middle part, we present the same conditional
models, further finetuned per scene on LLFF. Finally, in the last part, we compare per-scene NeRF-based approaches. Approaches with
∗ use the MipNeRF [1] as their base architecture, while the others use NeRF [12]. Results of [1, 3, 8, 13, 25] are from [13]. The best and
second-best results are in red and blue respectively.

rics for 3, 6, or 9 input views. The only exception is PSNR
on the whole image when only 3 input views are available,
which we already mentioned in the main paper.

Results on LLFF: We present results on LLFF in Tab. 13.
The conditional models PixelNeRF, SRF, and MVSNeRF
are trained on the DTU dataset. LLFF thus serves as an out-
of-distribution scenario. It appears that SRF and PixelNeRF
tend to overfit to the training data, leading to poor quanti-
tative results. MVSNeRF generalizes better to novel data.
All three conditional models seem to benefit from additional
fine-tuning. For 3 input views, NeRF, MipNeRF, and Diet-
NeRF perform worse than conditional models. DS-NeRF,
RegNeRF, and our approach SPARF nevertheless outper-
form the best conditional model, i.e. MVSNeRF. In the 6
and 9 view settings, all per-scene approaches except for the
standard NeRF outperform MVSNeRF.

Our approach SPARF outperforms all others on all met-
rics in the sparsest scenario, i.e. when considering 3 input
views. For 6 and 9 views, it obtains a slightly lower perfor-
mance than MipNeRF and RegNeRF, the latter using Mip-

NeRF as the base architecture. Nevertheless, our SPARF,
which is based on the NeRF architecture, obtains drastically
better results than the standard NeRF or DS-NeRF. Our ap-
proach could in theory be applied to any base network, for
example, MipNeRF. As a result, we believe combining our
approach with the MipNeRF base architecture could lead to
even better rendering quality.
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C) SPARF (Ours)

D) SCNeRF

E) BARF

F) RegBARF

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

A) 3 Input views

B) Initial camera poses
Ground-truth camera poses

Translational error
Initial/optimized camera poses

Ground-truth camera poses

Translational error
Initial/optimized camera poses

I) SPARF (Ours)

J) SCNeRF

K) BARF

L) RegBARF

G) 6 Input views

H) Initial camera poses

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Frontal-facing view
Top-down (aerial) view

Figure 7. Initial and optimized camera poses on the scene ’horns’ of the LLFF dataset. We consider 3 or 6 input views with initial identity
poses.

14



SPARF (Ours) SCNeRF RegBARF BARF

Training views: 

Ground-Truth

SPARF (Ours) SCNeRF RegBARF BARF

Training views: 

Ground-Truth

SPARF (Ours) SCNeRF RegBARF BARF

Training views: 

Ground-Truth

Figure 8. Novel-view renderings of alternative joint pose-NeRF training approaches on the DTU dataset. For each scene, we show the
RGB (first row) and depth (second row) renderings from an unseen viewpoint. We consider 3 input views with initial noisy poses. The
initial camera poses are created by perturbing the ground-truth poses with 15% of additive Gaussian noise.
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Figure 9. Novel-view renderings of our SPARF on the DTU dataset. For each scene, we show the RGB (first row) and depth (second row)
renderings from multiple unseen viewpoints. In each scene, we consider 3 input views (not shown here) with initial noisy poses, created
by perturbing the ground-truth poses with 15% of additive Gaussian noise.
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Figure 10. Novel-view renderings of alternative joint pose-NeRF training approaches on the LLFF dataset. For each scene, we show the
RGB (first row) and depth (second row) renderings from an unseen viewpoint. We consider 3 input views with initial identity poses.
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Figure 11. Novel-view renderings of our SPARF on the LLFF dataset. For each scene, we show the RGB (first row) and depth (second
row) renderings from multiple unseen viewpoints. In each scene, we consider 3 input views (not shown here) with initial identity poses.
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Figure 12. Novel-view renderings of alternative joint pose-NeRF training approaches on the Replica dataset. For each scene, we show the
RGB (first row) and depth (second row) renderings from an unseen viewpoint. On each scene, we consider 3 input views (not shown here)
with initial poses obtained by COLMAP [16] with PDC-Net matches [19].
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Figure 13. Novel-view renderings of our SPARF on the Replica dataset. For each scene, we show the RGB (first row) and depth (second
row) renderings from multiple unseen viewpoints. On each scene, we consider 3 input views (not shown here) with initial poses obtained
by COLMAP [16] with PDC-Net matches [19]. 20
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