
CLIPPO: Image-and-Language Understanding from Pixels Only—Supplementary Material

A. Example input images

Fig. 6 shows two examples of consecutive sentences from the C4 corpus, rendered using our Unifont renderer. The alt-texts
for contrastive pretraining are rendered in the same way.

Fig. 7 shows example images from the VQAv2 training set [25] with rendered text in the format we use to adapt CLIPPO
(and our baselines) to VQA. The question is rendered with line height of 16px (which is identical to the line height used
during pretraining) and the image is resized as to fill the remaining space (with a total image size of 224⇥224 or 384⇥384).

Figure 6. Two examples for rendered consecutive sentences from C4 (image size 224⇥ 224). The rendering is identical for alt-texts.

Figure 7. Example training images with rendered questions (black letters on gray background) from the VQAv2 dataset (image size
224⇥ 224). After fine-tuning CLIPPO on VQAv2 it can process images and question jointly in this form. Note that the answers (on white
background) are not part of the image.



B. Training details

We rely on a single training setup for all our baselines and visual text models. This setup was tuned to to produce good
results for standard image/alt-text contrastive training as in [56] (using exactly the same loss function as [56], following the
pseudocode in [56, Fig. 3]) and we found that it readily transfers to 1T-CLIP and CLIPPO (including variants with text/text
co-training).

Our default architecture is a ViT-B/16 [16] and we perform a subset of experiments with a ViT-L/16 architecture to study
the effect of scale (we equip both models a MAP head [40] to pool embeddings). In all cases, the representation dimension
used for the contrastive loss is 768. We set the batch size to 10,240 and train the main models for 250k steps, using a
minimum 100k training steps for ablations. For models co-trained with a certain percentage of text/text data, we scale the
number of iterations such that the number of image/alt-text pairs seen matches the number of iterations of the corresponding
model without text/text data (e.g. when 50% of the data is text/text pairs we increase the number of iterations from 250k to
500k). The contrastive loss is computed across the full batch.

We use the Adafactor optimizer [66] with a learning rate of 10�3, parameters �1 = 0.9 and �2 = 0.999, and decoupled
weight decay with weight 10�4. Gradients are clipped to a norm of 1. We initialize the learned temperature parameter in
the contrastive loss with a value of 10. We employ a reciprocal square root schedule with 10k steps linear warmup and 10k
steps linear cooldown. This schedule has the advantage that it allows resuming training before cooldown to train a subset of
models for more steps (unlike e.g. a cosine schedule which is scaled to a predefined target number of steps). Apart from the
learning rate, the training setup is static for all models except for the CLIPPO L/16 models co-trained with 25% and 50%
C4 data. To save compute, we do not co-train these with C4 from scratch, but we take the checkpoints pretrained for 150k
steps without C4 and continue training these with mixed batches for 350k more steps (i.e. we deviate from the rule described
above to adapt the number of training steps with mixed batches).

Following the above schedules and hyperparamteres we further train CLIPPO models on a mix of YFCC-100M [71] and
C4 (some initialized with an ImageNet21k-pretrained checkpoint), and release them publicly 4. We use the full YFCC-
100M data set, sampling one of the available title/description/tag annotations at random for each each example. We drop
non-descriptive annotations (e.g. descriptions consisting of digits only) following the filtering procedure outlined in [85,
Appendix E]. Results for these models can be found in Tables 6 and 8.

For all CLIPPO and 1T-CLIP experiments with ViT B/16-scale architecture (i.e. the majority of experiments) we train
on 64 Cloud TPUv2 chips. For larger models (CLIP⇤ B/16 and CLIPPO/1T-CLIP L/16) we use 64 Cloud TPUv3 or Cloud
TPUv4 chips to accommodate the increased memory requirements.

B.1. Fine-tuning details for VQA tasks

Our fine-tuning protocol is inspired by the one described in [17, Sec. 4.1.1]. After replacing the last linear layer of the
model with a randomly initialized one with an appropriate number of outputs, we fine-tune for 8,000 steps on a combination
of the VQAv2 training set and 90% of the validation set, using the remaining 10% for learning rate selection (recall that we
report results on the test-dev set). We rely on SGD with momentum 0.9 and a cosine schedule with 800 linear warmup steps,
selecting the learning rate for each model from {0.03, 0.1, 0.2}. The learning rate for the parameters of the freshly initialized
head is multiplied by a factor of 10. Gradients are clipped to a norm of 1.

As it is common in the VQA literature to perform evaluation at high resolution, we also evaluate our models on 384⇥ 384
images (rendering the question at the top of the image following the same strategy as for 224⇥224 images, see Appendix A).
To adapt the models to this resolution before fine-tuning, we train a subset of models for 30k iterations at a resolution of
384px, starting from the corresponding 224px checkpoints stored right before cooldown.

4https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/clippo/README.md

https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/clippo/README.md


C. Additional results

C.1. Results on LAION-400M

In Tables 4 and 5 show results on vision and vision-language benchmarks as well as the GLUE benchmark, for the most
important CLIPPO and 1T-CLIP models trained on the publicly available LAION-400M dataset [64] (see Appendix C.2 for
these results in the context of all other results in the paper). We also show the corresponding models trained on WebLI.

For all the benchmarks/metrics, models trained on LAION-400M exhibit the same ranking as the models trained on WebLI.
The ImageNet-1k zero shot and 10-shot results are a few percentage points lower for the models trained on LAION-400M
compared to the models trained on WebLI, but the retrieval results on MS-COCO and Flickr30k are consistently a few points
better. The GLUE average scores seem largely independent of whether WebLI or LAION-400M is used as a pretraining data
set, except for 1T-CLIP, where WebLI-based pretraining leads to a better GLUE score.

#param. training dataset I1k 10s. I1k 0s. C I!T C T!I F I!T F T!I

1T-CLIP 118M WebLI 50.9 60.1 46.2 28.2 76.1 55.2
CLIPPO 93M WebLI 49.7 58.0 44.9 29.0 73.1 55.4
CLIPPO 93M WebLI + 25%C4 49.4 55.4 40.2 25.3 69.0 50.5
CLIPPO 93M WebLI + 50%C4 45.6 51.1 34.3 21.7 61.7 43.2

1T-CLIP 118M LAION 46.0 54.3 49.0 31.5 77.5 59.7
CLIPPO 93M LAION 45.3 53.6 46.7 30.3 76.9 58.9
CLIPPO 93M LAION + 25%C4 44.9 50.6 41.8 27.2 71.1 53.7
CLIPPO 93M LAION + 50%C4 41.4 46.0 38.2 24.3 66.3 49.0

Table 4. Vision and vision-language cross-modal results obtained when training on LAION-400M [64], along with the corresponding
models trained on WebLI. We report ImageNet-1k 10-shot linear transfer validation accuracy (I1k 10s.), ImageNet-1k zero-shot transfer
validation accuracy (I1k 0s.), image-to-text and text-to-image retrieval recall@1 on MS-COCO (C I!T and C T!I) and on Flickr30k (F
T!I and F I!T). All models have a ViT B/16 architecture (with separate text embedding for 1T-CLIP) and are trained for 100k iterations
(with adapted number of steps for models co-trained with C4, see Sec. B).

training dataset MNLI-M/MM QQP QNLI SST-2 COLA STS-B MRPC RTE avg

1T-CLIP text enc. WebLI 71.6 / 71.5 83.5 80.5 85.0 0.0 74.1 82.8 54.2 67.0
CLIPPO WebLI 72.2 / 72.5 84.0 81.2 86.7 0.0 81.0 84.0 57.8 68.8
CLIPPO WebLI + 25%C4 77.0 / 76.7 85.4 82.8 90.9 20.1 83.1 83.6 54.5 72.7
CLIPPO WebLI + 50%C4 78.8 / 78.3 86.0 84.8 92.0 34.4 83.1 84.2 58.8 75.6

1T-CLIP text enc. LAION 72.2 / 72.8 84.1 79.8 86.9 0.0 38.0 81.4 54.2 63.3
CLIPPO LAION 73.2 / 73.5 84.2 80.9 86.5 0.0 75.3 82.2 53.8 67.7
CLIPPO LAION + 25%C4 77.0 / 77.0 85.5 83.3 91.1 22.0 83.3 84.6 57.0 73.4
CLIPPO LAION + 50%C4 78.8 / 78.7 86.1 84.3 92.2 38.3 83.7 83.9 55.2 75.7

Table 5. Results for the GLUE benchmark (dev set) when training on LAION-400M [64], along with the corresponding models trained on
WebLI. The metric is accuracy except for the performance on QQP and MRPC, which is measured using the F1 score, CoLA which uses
Matthew’s correlation, and STS-B which evaluated based on Spearman’s correlation coefficient. “avg” corresponds to the average across
all metrics. All models have a ViT B/16 architecture (with separate text embedding for 1T-CLIP) trained for 100k iterations (with adapted
number of steps for models co-trained with C4, see Sec. B).

C.2. All image, vision-language, and language understanding results

Image classification and retrieval Table 6 shows the full set of image classification and image/text retrieval results, includ-
ing models trained for 100k and 250k steps.

In addition to the results presented in the main paper, we also show results for pretraining with multilingual alt-texts. In
this context, CLIP⇤, 1T-CLIP, and CLIPPO all obtain a somewhat worse scores on these English-based metrics, but perform
much better when evaluated on multilingual image/text retrieval.

We also show results CLIPPO models that were initialized with a ViT trained for image classification. We observe that
this improves ImageNet-1k-based classification metrics, but cannot prevent the image and image/text metrics from degrading
when co-training with C4 data.



lan. #param. training dataset steps I1k 10s. I1k 0s. C I!T C T!I F I!T F T!I

CLIP* EN 203M WebLI 100k 52.9 62.8 47.2 29.7 76.8 57.2
1T-CLIP EN 118M WebLI 100k 50.9 60.1 46.2 28.2 76.1 55.2
CLIPPO EN 93M WebLI 100k 49.7 58.0 44.9 29.0 73.1 55.4
CLIPPO untied EN 186M WebLI 100k 52.4 61.8 47.2 29.5 76.6 55.0
CLIPPO EN 93M WebLI + 25%C4 133k 49.4 55.4 40.2 25.3 69.0 50.5
CLIPPO EN 93M WebLI + 50%C4 200k 45.6 51.1 34.3 21.7 61.7 43.2
CLIP* L/16 EN 652M WebLI 100k 59.0 67.2 49.6 32.1 79.3 60.1
1T-CLIP L/16 EN 349M WebLI 100k 58.0 65.6 49.5 31.6 80.2 57.8
CLIPPO L/16 EN 316M WebLI 100k 56.6 64.9 50.2 33.0 77.0 61.5

CLIP* ML 203M WebLI 100k 50.8 59.0 43.6 27.4 71.1 53.2
1T-CLIP ML 118M WebLI 100k 49.2 55.2 41.6 25.4 70.9 51.0
CLIPPO ML 93M WebLI 100k 47.3 52.0 38.9 24.4 67.7 48.3

CLIPPO JFT init EN 93M WebLI 100k 57.1 59.9 43.9 29.2 71.1 55.0
CLIPPO JFT init EN 93M WebLI + 25%C4 133k 54.5 56.3 37.0 24.3 64.4 47.3
CLIPPO JFT init EN 93M WebLI + 50%C4 200k 50.9 51.8 34.3 22.1 60.5 45.1

1T-CLIP EN 118M LAION 100k 46.0 54.3 49.0 31.5 77.5 59.7
CLIPPO EN 93M LAION 100k 45.3 53.6 46.7 30.3 76.9 58.9
CLIPPO EN 93M LAION + 25%C4 133k 44.9 50.6 41.8 27.2 71.1 53.7
CLIPPO EN 93M LAION + 50%C4 200k 41.4 46.0 38.2 24.3 66.3 49.0

CLIP* EN 203M WebLI 250k 55.8 65.1 48.5 31.3 79.2 59.4
1T-CLIP EN 118M WebLI 250k 53.9 62.3 48.0 30.3 77.5 58.2
CLIPPO EN 93M WebLI 250k 53.0 61.4 47.3 30.1 76.4 57.3
CLIPPO EN 93M WebLI + 25%C4 333k 52.1 57.4 40.7 26.7 68.9 51.8
CLIPPO EN 93M WebLI + 50%C4 500k 48.0 53.1 35.2 23.4 64.8 47.2
CLIP* L/16 EN 652M WebLI 250k 62.0 70.1 51.3 34.1 80.5 62.9
1T-CLIP L/16 EN 349M WebLI 250k 60.8 67.8 50.7 32.5 81.0 61.0
CLIPPO L/16 EN 316M WebLI 250k 60.3 67.4 50.6 33.4 79.2 62.6
CLIPPO L/16 EN 316M WebLI + 25%C4 500k 60.5 66.0 44.5 29.8 72.9 57.3
CLIPPO L/16 EN 316M WebLI + 50%C4 500k 56.8 61.7 39.7 27.3 70.1 54.7

1T-CLIP 384px EN 118M WebLI 270k 57.8 66.2 51.5 32.7 81.7 63.0
CLIPPO 384px EN 93M WebLI 270k 57.2 64.7 51.0 32.9 79.9 61.9
CLIPPO 384px EN 93M WebLI + 25%C4 350k 56.0 61.0 44.3 27.9 73.4 55.0
1T-CLIP L/16 384px EN 349M WebLI 270k 64.5 70.9 52.6 34.8 81.6 63.8
CLIPPO L/16 384px EN 317M WebLI 270k 63.9 70.5 54.4 35.3 83.6 64.9
CLIPPO L/16 384px EN 317M WebLI + 25%C4 520k 64.2 69.0 47.5 31.9 76.2 59.7

CLIP* ML 203M WebLI 250k 53.7 62.1 46.9 29.4 76.9 57.8
1T-CLIP ML 118M WebLI 250k 52.6 58.4 44.9 27.7 72.2 53.7
CLIPPO ML 93M WebLI 250k 51.1 56.1 42.5 26.6 69.9 52.9

CLIPPO ML 93M YFCC-100M 250k 38.2 43.4 34.7 19.7 64.7 40.6
CLIPPO I21k init ML 93M YFCC-100M 250k 44.7 47.4 36.1 21.3 66.0 42.3
CLIPPO I21k init ML 93M YFCC-100M + 25%C4 333k 43.8 44.8 33.3 19.4 61.0 37.8
CLIPPO I21k init ML 93M YFCC-100M + 50%C4 500k 41.2 42.0 31.4 17.8 58.4 36.8
CLIPPO I21k init ML 93M YFCC-100M + 75%C4 500k 34.5 33.4 26.6 14.6 53.1 31.0

Table 6. We report ImageNet-1k 10-shot linear transfer validation accuracy (I1k 10s.), ImageNet-1k zero-shot transfer validation accuracy
(I1k 0s.), image-to-text and text-to-image retrieval recall@1 on MS-COCO (C I!T and C T!I) and on Flickr30k (F T!I and F I!T).
“CLIPPO untied” is a two tower model where two separate ViT B/16 models (i.e. with separate parameters) are used to encode images and
rendered alt-texts. “CLIPPO JFT init” and “CLIPPO I21k init” are CLIPPO models that were initialized with the parameters of ViT B/16
from [16] trained on JFT-300M and ImageNet-21k, respectively. Models with the suffix “384px” are models trained for 30k iterations at a
resolution of 384px, starting from the corresponding 224px checkpoints stored right before cooldown.



VQA Table 7 shows results for all our models and baselines on VQAv2 (test-dev set). In addition to what is discussed in
the main paper, we observe that co-training with 50% C4 data does not lead to improvements over co-training with 25% C4
data. Further, the gap between 1T-CLIP and CLIPPO becomes narrow as the model size grows. Increasing the resolution
form 224px to 384px leads to a substantial improvement across models.

res. yes/no number other overall

ViT B/16 JFT 224 71.16 40.71 51.55 58.39
1T-CLIP 224 76.08 42.46 53.1 61.36
CLIP* 224 77.49 44.65 55.47 63.31
CLIPPO 50%C4 224 83.81 45.45 55.62 66.08
CLIPPO 224 83.01 46.36 56.55 66.29
CLIPPO 25%C4 224 84.48 46.18 56.27 66.74
CLIPPO L/16 50%C4 224 84.33 48.2 58.68 68.05
CLIPPO L/16 224 83.74 49.33 58.9 68.05
1T-CLIP L/16 224 84.03 49.41 59.53 68.48
CLIPPO L/16 25%C4 224 84.91 49.26 59.33 68.73

1T-CLIP 384 77.92 45.21 56.45 64.02
CLIPPO 384 84.22 47.94 58.62 67.95
CLIPPO 25%C4 384 86.91 49.34 60.52 70.12
CLIPPO L/16 384 86.26 51.91 61.89 70.79
1T-CLIP L/16 384 86.3 52.01 62.32 71.03
CLIPPO L/16 25%C4 384 86.85 53.57 63.05 71.78

METER CLIP B/32+BERT 224 69.56
ViLT B/32 384 70.33
Pythia CLIP B/16 600 62.72
MCAN CLIP B/32 600 65.40

Table 7. Results on the VQAv2 benchmark (test-dev set). Our 224px and 384px models and baselines are pretrained for 250k and 270k
steps (or an appropriately adapted number of steps when co-trained with C4), respectively, and fine-tuned to VQAv2. In addition to
CLIPPO and baselines produced in this work, we also compare to Pythia and MCAN models with ViT vision encoders from [67], and with
comparably sized METER [17] and ViLT [36] models. “ViT B/16 JFT” is the model trained on JFT-300M from [16].

Language understanding Table 8 shows additional results for our models and baselines on the GLUE benchmark. We
discuss a number of observations that were not discussed in the main paper.

First, it can be seen that a randomly initialized ViT performs much worse than all the other models, including the vision
encoders of the different CLIP⇤ and 1T-CLIP variants, which all perform similarly, independently on the precise training
setup.

We further present results for models that were trained with multilingual image/alt-text pairs (note that GLUE contains
only English tasks). When trained for 100k steps, CLIP⇤, 1T-CLIP and CLIPPO obtain a lower GLUE score than their
counterparts trained on English-only alt-texts. The GLUE scores of these multilingual models improve when training for
250k steps. In particular, CLIPPO almost matches its English-only counterpart, whereas CLIP⇤ and 1T-CLIP still lag a few
points behind their English-only counterparts.

Moreover, the accuracy of CLIP⇤ and 1T-CLIP vision encoders we observe for SST-2 is in agreement with what was
reported in [56, Table 10] for CLIP with a ViT-B/16 image encoder. Note that CLIPPO obtains a significantly higher score.
With frozen representations we obtained 71.6% for the CLIP⇤ vision encoder vs. 78.3% for CLIPPO, so again CLIPPO
performs better by a large margin.



lan. training dataset steps MNLI-M/MM QQP QNLI SST-2 COLA STS-B MRPC RTE avg

BERT-Base EN Wiki + BC 84.0 / 84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 83.1
PIXEL EN Wiki + BC 78.1 / 78.9 84.5 87.8 89.6 38.4 81.1 88.2 60.5 76.3
BiLSTM EN 66.7 / 66.7 82.0 77.0 87.5 17.6 72.0 85.1 58.5 68.1
BiLSTM+Attn,ELMo EN 72.4 / 72.4 83.6 75.2 91.5 44.1 56.1 82.1 52.7 70.0

ViT from scratch EN 33.4 / 33.2 51.2 56.4 53.9 0.0 5.1 81.2 52.7 40.8
CLIP* img. enc. EN WebLI 100k 65.2 / 66.5 75.7 68.0 77.8 0.0 6.9 81.5 52.3 54.9
CLIP* text enc. EN WebLI 100k 70.6 / 71.0 80.6 71.1 85.9 0.0 62.4 82.1 54.9 64.3
1T-CLIP img. enc. EN WebLI 100k 64.4 / 65.5 74.2 65.8 74.5 0.0 12.0 81.6 53.8 54.7
1T-CLIP text enc. EN WebLI 100k 71.6 / 71.5 83.5 80.5 85.0 0.0 74.1 82.8 54.2 67.0
CLIPPO unt. img. enc. EN WebLI 100k 64.8 / 65.6 76.4 67.0 77.1 0.0 7.0 81.4 51.6 54.5
CLIPPO unt. text enc. EN WebLI 100k 65.2 / 65.1 83.7 74.8 86.6 3.1 56.1 81.8 54.9 63.5
CLIPPO EN WebLI 100k 72.2 / 72.5 84.0 81.2 86.7 0.0 81.0 84.0 57.8 68.8
CLIPPO EN WebLI + 25%C4 133k 77.0 / 76.7 85.4 82.8 90.9 20.1 83.1 83.6 54.5 72.7
CLIPPO EN WebLI + 50%C4 250k 78.8 / 78.3 86.0 84.8 92.0 34.4 83.1 84.2 58.8 75.6
CLIPPO EN C4 100k 79.3 / 78.8 86.4 85.4 93.2 47.7 84.2 83.7 59.6 77.6
CLIPPO ML WMT19 100k 72.9 / 72.9 80.8 74.5 88.6 4.0 19.6 81.9 55.6 61.2
CLIPPO EN WMT19 BT 100k 70.0 / 70.3 80.5 80.1 84.6 10.8 65.7 81.6 56.0 66.6
1T-CLIP L/16 EN WebLI 100k 72.8 / 73.3 84.3 81.4 88.5 0.0 79.1 82.3 53.4 68.3
CLIPPO L/16 EN WebLI 100k 67.4 / 66.9 84.9 76.7 86.5 0.0 81.5 82.9 53.1 66.6

CLIP* img. enc. ML WebLI 100k 63.3 / 64.4 73.8 65.9 75.6 0.0 7.0 81.7 54.5 54.0
CLIP* text enc. ML WebLI 100k 63.1 / 63.1 79.2 70.6 75.6 4.4 34.8 81.2 49.8 58.0
1T-CLIP img. enc. ML WebLI 100k 62.9 / 64.3 73.5 63.8 71.9 0.0 6.5 81.3 53.1 53.0
1T-CLIP text enc. ML WebLI 100k 64.9 / 64.8 80.5 74.7 78.6 4.2 66.0 81.5 50.2 62.8
CLIPPO ML WebLI 100k 72.0 / 72.2 82.1 80.4 85.0 0.0 16.1 81.6 50.9 60.0

1T-CLIP img. enc. EN LAION 100k 66.8 / 67.6 77.9 73.3 78.8 0.0 12.9 81.7 55.2 57.1
1T-CLIP text enc. EN LAION 100k 72.2 / 72.8 84.1 79.8 86.9 0.0 38.0 81.4 54.2 63.3
CLIPPO EN LAION 100k 73.2 / 73.5 84.2 80.9 86.5 0.0 75.3 82.2 53.8 67.7
CLIPPO EN LAION + 25%C4 133k 77.0 / 77.0 85.5 83.3 91.1 22.0 83.3 84.6 57.0 73.4
CLIPPO EN LAION + 50%C4 250k 78.8 / 78.7 86.1 84.3 92.2 38.3 83.7 83.9 55.2 75.7

CLIP* img enc. EN WebLI 250k 66.4 / 67.5 78.6 69.4 78.6 0.0 5.2 81.2 52.7 55.5
CLIP* text enc. EN WebLI 250k 71.8 / 72.5 82.7 73.0 86.2 6.6 65.0 81.4 53.8 65.9
1T-CLIP text enc. EN WebLI 250k 72.6 / 73.0 83.8 80.7 84.9 0.0 79.6 83.3 57.0 68.3
CLIPPO EN WebLI 250k 73.0 / 72.6 84.3 81.2 86.8 1.8 80.5 84.1 53.4 68.6
CLIPPO EN WebLI + 25%C4 333k 77.7 / 77.2 85.3 83.1 90.9 28.2 83.4 84.5 59.2 74.4
CLIPPO EN WebLI + 50%C4 500k 79.2 / 79.2 86.4 84.2 92.9 38.9 83.4 84.8 59.9 76.6
CLIPPO EN C4 250k 79.9 / 80.2 86.7 85.2 93.3 50.9 84.7 86.3 58.5 78.4
1T-CLIP L/16 text enc. EN WebLI 250k 74.3 / 74.7 85.1 81.6 86.6 8.0 82.5 83.1 57.4 70.4
CLIPPO L/16 EN WebLI 250k 68.4 / 67.2 85.1 77.2 87.6 0.0 81.0 84.3 52.7 67.1
CLIPPO L/16 EN WebLI + 25%C4 500k 76.6 / 75.5 87.1 79.9 93.2 48.2 84.1 84.6 56.0 76.1
CLIPPO L/16 EN WebLI + 50%C4 500k 82.3 / 82.4 87.9 86.7 94.2 55.3 85.8 85.9 59.2 80.0
CLIPPO L/16 EN C4 250k 83.9 / 83.6 87.9 89.1 94.7 62.0 87.1 87.0 62.5 82.0

CLIP* text enc. ML WebLI 250k 64.3 / 64.6 80.8 75.7 78.6 11.2 70.7 81.9 49.8 64.2
1T-CLIP text enc. ML WebLI 250k 65.8 / 65.7 80.9 75.0 80.7 0.0 71.1 81.9 51.6 63.6
CLIPPO ML WebLI 250k 71.1 / 71.2 82.8 79.6 85.2 0.0 78.3 83.1 53.1 67.1

CLIPPO ML YFCC-100M 250k 71.3 / 71.5 79.1 67.9 85.7 0.0 14.0 83.4 54.9 58.6
CLIPPO I21k init ML YFCC-100M 250k 70.0 / 70.1 83.7 81.6 86.1 0.0 18.5 83.0 53.1 60.7
CLIPPO I21k init ML YFCC-100M + 25%C4 333k 75.7 / 75.1 85.2 83.5 89.6 0.0 82.3 82.7 52.7 69.7
CLIPPO I21k init ML YFCC-100M + 50%C4 500k 77.4 / 77.4 86.0 83.9 91.7 34.5 84.5 85.1 56.3 75.2
CLIPPO I21k init ML YFCC-100M + 75%C4 500k 79.8 / 79.1 86.5 84.3 92.0 44.5 85.3 88.2 58.5 77.6

Table 8. Complete results for the GLUE benchmark (dev set). The metric is accuracy except for the performance on QQP and MRPC, which
is measured using the F1 score, CoLA which uses Matthew’s correlation, and STS-B which evaluated based on Spearman’s correlation
coefficient. “avg” corresponds to the average across all metrics. The results for BERT-Base and PIXEL are from [60, Table 3], and BiLSTM
and BiLSTM+Attn, ELMo from [73, Table 6]. All encoders considered here have a transformer architecture comparable to BERT-Base (up
to the text embedding layer), except for CLIPPO L/16 which uses a ViT L/16, and the two BiLSTM model variants. Wiki and BC stand for
(English) Wikipedia and Bookcorpus [86] data, respectively. “ViT from scratch” is a randomly initialized, untrained ViT B/16. “CLIPPO
unt.” is a two tower model where two separate ViT B/16 models (i.e. with separate parameters) are used to encode images and rendered
alt-texts. All models process rendered text except for “CLIP⇤ text enc.” and “1T-CLIP text enc.” which process tokenized text. “CLIPPO
I21k init” are CLIPPO models that were initialized with the parameters of ViT B/16 trained on ImageNet-21k.



C.3. Multilingual vision-language understanding

Multilingual image/text retrieval Fig. 8 shows the per-language retrieval performance on Crossmodal3600 [70] of CLIP⇤,
1T-CLIP, and CLIPPO. CLIP⇤ obtains a slightly better performance than the other two methods which is not surprising given
it uses about double the trainable parameters of the other models and separate text and image encoders. CLIPPO matches
or outperforms 1T-CLIP on average, despite having fewer trainable parameters. Overall, the performance per-language
correlates strongly across all models, with Japanese and Korean showing the biggest differences between CLIPPO and the
other models.

Figure 8. Per-language and average image-to-text and text-to-image recall@1 on the Crossmodal3600 data set. All the models are trained
for 250k iterations on WebLI with multilingual alt-texts. CLIP⇤ and 1T-CLIP use a SentecePiece tokenizer with vocabulary size 32,000
built from 300M randomly sampled WebLI alt-texts, whereas CLIPPO is tokenizer-free by design.



Tokenizers We use the following open-source tokenizers in our experiments:

• T5-en [57]: gs://t5-data/vocabs/cc_all.32000/sentencepiece.model

• T5-all [57]: gs://t5-data/vocabs/cc_en.32000/sentencepiece.model

• mT5 [79]: gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model

We take the first 32,000 pieces of the mc4 vocabulary to create a vocabulary of equal size to the others.
Tokenizer efficiency Fig. 9 shows the average sequence length on 20,000 samples of different languages from C4. CLIPPO
obtains a balanced average performance across the selected languages.

Figure 9. Sequence length of SentencePiece tokenziers derived from different corpora. All non-CLIPPO tokenizers have a vocabulary size
of 32,000.

gs://t5-data/vocabs/cc_all.32000/sentencepiece.model
gs://t5-data/vocabs/cc_en.32000/sentencepiece.model
gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model


D. Ablations and analysis

D.1. Impact of weight sharing

To better understand whether a modality-shared patch embedding or modality-shared heads are degrading the performance
of CLIPPO we train different models with separate embeddings and/or heads for image and (rendered) text inputs. The results
in Table 9 show that neither of the variants with separate embeddings and/or heads leads to a consistent improvement in image
classification or retrieval metrics compared to the default CLIPPO variant where both the embedding and head are shared.
For comparison we also show a variant with two ViT B/16 models (i.e. with separate parameters) to separately encode images
and rendered alt-texts, which mostly matches the CLIP⇤ baseline.

#param. shared separated I1k 10s. I1k 0s. C I!T C T!I F I!T F T!I

CLIP* 203M - all 52.9 62.8 47.2 29.7 76.8 57.2
CLIPPO untied 186M - all 52.4 61.8 47.2 29.5 76.6 55.0

1T-CLIP 118M encoder, heads embeddings 50.9 60.1 46.2 28.2 76.1 55.2
CLIPPO 93M all - 49.7 58.0 44.9 29.0 73.1 55.4
CLIPPO 94M encoder, embeddings heads 49.2 58.1 45.0 28.7 71.8 56.5
CLIPPO 94M encoder, heads embeddings 49.8 58.4 44.5 28.6 73.7 56.4
CLIPPO 94M encoder embeddings, heads 48.9 57.6 44.5 26.8 72.9 53.7

Table 9. We report ImageNet-1k 10-shot linear transfer validation accuracy (I1k 10s.), ImageNet-1k zero-shot transfer validation accuracy
(I1k 0s.), image-to-text and text-to-image retrieval recall@1 on MS-COCO (C I!T and C T!I) and on Flickr30k (F T!I and F I!T).
All models are trained for 100k iterations. “CLIPPO untied” is a two tower model where two separate ViT B/16 models (i.e. with separate
parameters) are used to encode images and rendered alt-texts.

D.2. Impact of the text location

As we train CLIPPO with text rendered at the top left of the image, it is interesting to see how the performance changes
when the text is rendered at different locations at inference time. To this end, we repeat the transfer VQAv2 experiment with
text rendered in the middle and at the bottom of the image. We observe a drop for the middle/bottom locations, but this drop
can be fixed simply by multiplying learning rate for the positional embedding by 3 during fine-tuning on the VQAv2 training
set. Multiplying the learning rate of the positional embedding CLIP⇤ and 1T-CLIP during fine-tuning does not affect their
performance on VQAv2.

text location top middle bottom

no LR scaling 66.29 60.00 61.53
3⇥ LR for pos. embedding 66.36 66.50 66.04

Table 10. The impact of the text location on the VQAv2 test-dev score.

D.3. Typographic attacks

Prior works have identified that CLIP can be fooled by typographic attacks, whereby it reads scene text and zero-shot
classifies an image according to this text text rather than the objects in the scene [23, 42, 50]. As CLIPPO shares processing
for images and text, it is interesting to analyze whether the models are more prone to such typographic attacks.

We assess this on two ways: first, we test models on the real-world Typographic Attack dataset curated by Materzynska
et al. [51]. The dataset was created from 20 objects. For each object there is a picture of the object without any adversarial
attack, and 19 versions where a post-it note is stuck on top of the object. Written on the note is an “incorrect” label unrelated
to the object. A contrastive model susceptible to typographic attacks would classify the object as one of these confounding
labels. Secondly, we re-evaluate zero-shot classification accuracy on ImageNet, but for each image insert a randomly selected
“incorrect” label using our Unifont renderer. A model which reads this label instead of observing the image would suffer a
larger drop in ImageNet accuracy, and thus also be more susceptible to typographic attacks.

Table 11 (left) shows the accuracy with which models predict the correct label instead of the confounder on the post-it
note. All models are largely able to ignore the typographic attack, and the CLIPPO models are on par with or better than
the counterparts relying on a tokenizer. Table 11 (right) shows the drop in accuracy due to adversarial text labels, rendered



at different locations using the CLIPPO Unifont renderer, in ImageNet classification. All models see a drop in accuracy of
roughly similar magnitude, except for CLIPPO when text is positioned at the top (where it is during normal training). Here,
the drop is lower, possibly indicating a distinction between “scene text” and the rendered-text inputs.

CLIP⇤ 1T-CLIP CLIPPO

Without prompts
B/16 85.0% 89.4% 89.4%
L/16 89.4% 87.5% 93.8%

With prompts
B/16 87.5% 91.9% 92.5%
L/16 92.5% 88.7% 91.3%

i1k acc original bottom middle top

CLIP⇤ 65.1% -1.3 ± 0.1% -7.0 ± 0.1% -2.0 ± 0.1%
1T-CLIP 61.4% -1.4 ± 0.1% -7.5 ± 0.2% -2.3 ± 0.1%
CLIPPO 62.3% -1.2 ± 0.1% -7.3 ± 0.1% -1.2 ± 0.1%

Table 11. Classification accuracy when exposed to typographic attacks. Left: The rate at which models correctly ignore real-world
typographic attacks on the dataset of Materzynska et al. [51]. Right: The effect on the classification accuracy of adding adversarial text
labels to ImageNet-1k using the CLIPPO unifont renderer (for B/16 models).

D.4. Modality gap and representation analysis

Fig. 10 shows additional modality gap visualizations, complementing those in the main paper (Sec. 4.6). In addition to
a visualization for the WebLI validation set, we also show results on the MS-COCO validation set. The qualitative and
quantitative trend across model variants on MS-COCO is similar to that observed for WebLI, except that the modality gap is
somewhat larger for a given model variant (we use the formula from [45, Sec. 4.2] to compute the modality gap). This might
be due to the fact that image/caption pairs from MS-COCO have a different distribution than the image/alt-text pairs from
WebLI. We further observe that 1T-CLIP and CLIPPO models have a comparable modality gap, and adding more C4 data to
the training data mix does not necessarily lead to a reduction in modality gap (going from 25% to 50% C4 data increases the
modality gap for MS-COCO).

Since the modality gap measures the Euclidean distance between the image and alt-text
mean embeddings it does not fully reflect how the pairwise Euclidean distance between em-
beddings of corresponding images and alt-texts changes. We plot histograms of the latter in
Fig. 11 and observe that the average pairwise distance across models roughly follows the trend
of the modality gap. However, the average pairwise distance remains larger than 0.5 even when
the modality gap is smaller than 0.1, hence corresponding images and alt-text are not mapped
to the same embedding.

Finally, to assess representation similarities between 1T-CLIP and CLIPPO beyond the final representation layer, and in
particular to better understand the role of the tokenizer, we compute the centered kernel alignment (CKA) [38] between layer
outputs for sentences from C4. Other than the first two layers, all CLIPPO layers are similar to 1T-CLIP layers.



Figure 10. Visualization of the modality gap for examples from the WebLI and MS-COCO validation sets. The visualization follows the
analysis from [45] and shows embedded images (blue dots) and corresponding alt-text (orange dots), projected to the first two principal
components of the validation data matrix.

Figure 11. Histograms of the distribution of the Euclidean distance between corresponding image and alt-text embeddings. The average
distance across models follows the trend of the modality gap, but the reduction in distance between embeddings when co-training with C4
is not as drastic as for the modality gap.



D.5. Patch embedding analysis

Following [16], we inspect the patch embedding of different CLIPPO variants and baselines. Concretely, we visualize the
top 30 principal components of the patch embedding kernel in Fig. 12. Qualitatively, the top components for CLIP⇤ and 1T-
CLIP are similar to those for supervised ViT training in [16, Sec. 4.5], resembling a plausible basis for image patches. There
seems to be no substantial visual difference between the patch embedding structure for English and multilingual variants of
CLIP⇤ and 1T-CLIP. By contrast, the top components for CLIPPO appear to contain more horizontal, high-frequency visual
features than the other models, with these features becoming more pronounced as the fraction of C4 data in the training
mix increases, or when multilingual alt-text is used. We speculate that this structure might be useful to represent letters and
subwords with varying horizontal position as prevalent in the rendered text images fed to CLIPPO.

Figure 12. Visualization of the top 30 principal components of the patch embedding kernel for CLIPPO variants and baselines. The top
components for CLIPPO appear to contain more horizontal, high-frequency visual features than the other models.
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