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1. Overview
In this supplementary material, we first present qualitative results of the existing and our methods. Second, we provide

the technical details of the proposed approach to complement the paper. Finally, we describe the details of the experiments,
including the dataset pre-processing, evaluation metric computation, and reproducing existing approaches.

2. Qualitative Results
We provide more qualitative results, i.e., videos on the project page.1

Comparing with previous SOTA methods. We show the single-image view synthesis results of difference scenes generated
by the GeoGPT [10], LoR [9], SE3DS [3] and the proposed pose-guided diffusion models.
Generating diverse outputs: We demonstrate that the proposed method is capable of producing multiple realistic videos
from the same set of inputs.
Ablation study: We show the qualitative results generated by the Source/target views concatenation and Cross-view attention
baselines described in Table 3 in the paper. Specifically, we use different diffusion models to generate the 64×64 videos. We
then use the same super-resolution diffusion model introduced in Section 3.2 in the paper to get the final 256 × 256 results.
Consistent with the quantitative results shown in Table 3 in the paper, the per-frame quality of the videos generated by the
baseline approaches degrades significantly in the final few frames.
Long-range view interpolation: In addition to single-image view synthesis, the proposed method can also interpolate be-
tween two far-away viewpoints. The key is to leverage the stochastic conditioning approach described in Section 3.3 of the
paper. Specifically, to interpolate the view i between two viewpoints l and k, we randomly sample the source view image xj

from the two viewpoints, i.e., xj ∼ P ({xl, xk}) during the backward process in the diffusion model. The sampling proba-
bilities of each input view are determined inverse proportional to the distance to the output viewpoint. In this experiment, we
take the 1st, 11th, and 21th frames from each testing video as the input. We interpolate between these input views to obtain
a 21-frames video as the result. As no existing approach tackles the long-range view interpolation problem, we compare our
approach with an alternative large-motion frame interpolation approach FiLM [8].
Failuer cases. We show several example failure cases. First, the proposed method cannot candle the case where the scene
scale is significantly different to those in the training data, e.g., natural scenes. Second, our approach fails to produce high-
quality results with rare camera pose sequences, e.g., going up/down stairs.
Flickering caused by super-resolution. To understand the flickering produced by our algorithm, we present the x-t slice
visualization in Figure 2. The flickering mainly comes from the per-frame super-resolution stage.

2.1. Technical Details

Epipolar line computation. We present the epipolar line computation in Figure 1. Given a point pi on the image plane at
the target view i and the relative camera pose {K,Ri→j , ti→j}, the goal is to find the corresponding epipolar line on the
image plane at the source view j. We first project the point pi onto the source view image plane as pi→j , namely

pi→j = π
(
Ri→j(K−1pi) + ti→j

)
, (1)

1https://poseguided-diffusion.github.io
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Figure 1. Epipolar line. (left) We show the computation of the epipolar line (red line) at the source view image xj which corresponds to
the point pi (red dot) on the target view image xi. (right) We visualize the epipolar line on the source view image xj of the point pi (red
dot) on the target view image xi. We compute the weight map (right image) according to the epipolar line using (5).

where π is the projection function. We also project the camera origin oi = [0, 0, 0]T at the target view i onto the source view
image plane as oi→j :

oi→j = π
(
Ri→j(K−1[0, 0, 0]T ) + ti→j

)
. (2)

Then the epipolar line of the point p on the source view image plane can be formulated as

pepipolar = oi→j + c(pi→j − oi→j) c ∈ {−∞,∞} ∈ R. (3)

Finally, the distance between a point pj on the source view image plane and the epipolar line can be computed as

d(pepipolar,p
j) = ∥(pj − oi→j)× (pi→j − oi→j)∥/∥pi→j − oi→j∥, (4)

where × and ∥ · ∥ indicate vector cross-product and vector norm, respectively. According to the epipolar line, we compute
the weight map, where higher pixel values indicate closer distance to the line

mpi,K,Ri→j ,ti→j (pj) = 1− sigmoid
(
50(d(pepipolar,p

j)− 0.05)
)

∀pj ∈ xj . (5)

We use the constant 50 to make the sigmoid function steep, and use the constant 0.05 to include the pixels that are nearby the
epipolar line. An example weight map is visualized in the right-hand side of Figure 1. After estimating the weight maps for
all positions in the source view image, we stack these maps and reshape to get the epipolar weight matrix Ei,j , which is used
to compute the epipolar attention described in (6) in the paper. Note that if the epipolar line does not intersect with the target
view, we assign the same value for all spatial positions in the epipolar weight matrix Ei,j . This makes our epipolar attention
falls back to the common cross-attention.
Stochastic frame sampling. We randomly sample the source view in both the training and inference stages. We observe
inferior results if we use stochastic sampling only during the inference time. We hypothesize this is due to the mismatch of
the input relative pose distributions between the training and inference stages.
Super-resolution. We present the super-resolution model details in Figure 3. We first bilinearly up-sample the low-resolution
target view, and concatenate it with the noised high-resolution target view. Combining the features extracted from the high-
resolution source view, we train the UNet network to de-noise the high-resolution target view. We empirically find that taking
the source view as input improves the temporal consistency in high-resolution videos.
Training details. We provide the training details, including the UNet architecture as well as the hyper-parameters in Figure 4
and Table 1. We implement the proposed method with PyTorch [7], and use 8 Nvidia V100 GPUs to conduct the training.

2.2. Experiment Details

Dataset processing. We follow Lai et al. [5] to process the RealEstate10K (Re10K) [13] and Matterport3D (MP3D) [1]
datasets and split them into training set and test set. Note that the availability of the YouTube videos in the Re10K dataset
changes over time. From the available videos, we remove the short videos (less than 200 frames) and eventually obtain
61, 986 videos in the training set and 1, 763 videos in the testing set. We randomly select 500 videos from the testing set for
all quantitative and qualitative experiments. As for the MP3D dataset, there are 6, 097 videos in the training set and 1, 062
videos in the test set, and again we select 500 videos from the test set for evaluation.
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Figure 2. X-T slice visualization. We visualize the x-t slice of the low-resolution (top) and high-resolution (bottom) videos. The flickering
mainly comes from the super-resolution stage.
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Figure 3. Super-resolution pose-guided diffusion model. We first bilinearly up-sample the low-resolution target view, and concatenate
it with the noised high-resolution target view. Combining the features extracted from the high-resolution source view, we train the UNet
network to de-noise the high-resolution target view.
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Figure 4. UNet architecture. We present the UNet architecture of the pose-guided diffusion model that produces 64× 64 novel views.

Evaluation metrics. We use the AlexNet model to compute the LPIPS score, and InceptionV3 [11] network to calculate
the FID/KID scores.234 Both the AlexNet and InceptionV3 models are pre-trained on the ImageNet dataset. We use 30, 000
training images to pre-compute the real data statics for estimating the FID/KID scores. On the other hand, we use the
pre-trained RAFT [12] model to compute the flow warping error Ewarp [4].5

Reproducing results of previous methods. We describe how we evaluate the previous methods as follows:

• GeoGPT [10]: We use the official implementation.6 For the evaluation conducted on the Re10K dataset, we use the
2https://github.com/richzhang/PerceptualSimilarity
3https://github.com/mseitzer/pytorch-fid
4https://github.com/GaParmar/clean-fid
5https://github.com/princeton-vl/RAFT
6https://github.com/CompVis/geometry-free-view-synthesis
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Table 1. Training details. We provide the details of the UNet architecture and the training hyper-parameters.

Models 64 64 → 256

Channels 128 128
Number of residual blocks 3 3
Channel multiples 1, 2, 3, 4 1, 1, 2, 3, 4
Head channels 64 64
Attention resolutions (self and epipolar) 32, 16, 8 16
Dropout (training) 0.1 0.1

Diffusion steps (training) 1000 1000
Noise schedule cosine cosine
Sampling steps (inference) 250 250
Sampling variance method learned [6] DDPM [2]

Batch size 64 32
Iterations 1M 1M
Learning rate 0.0001 0.0001
Adam β2 0.999 0.999
Adam ϵ 1e-8 1e-8
EMA decay 0.9999 0.9999

pre-trained model parameters released on the Github webpage. Since the resolution of the generated images is slightly
different from our setting, we center-crop and resize the images to 256× 256 for evaluation. As for the MP3D dataset,
we train the model using the default training parameters.

• LoR [9]: We use the official implementation to conduct the training and evaluation.7 For the Re10K dataset, we train
and evaluate the model using the default hyper-parameters. As for the MP3D dataset, we use the pre-trained model
parameters provided by the authors to conduct the evaluation.

• SE3DS [3]: We use the official implementation and pre-trained model parameters to conduct the evaluation on the
Re10K dataset.8
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