
A. User Study
To obtain the results in Tab. 1, we recruited 147 human

raters via Prolific, a crowdsourcing platform for recruiting
study participants. In aggregate, raters evaluated 11,610
pairs of clips randomly sampled from our models, ground
truth, baseline models, or a checkpoint from our model
training (as seen in Sec. 4.3). All dances were rendered
in the same setting with music sampled uniformly at ran-
dom. Raters were asked to select the dance that “looked and
felt better overall”. In addition to computing the raw win
rate of our method when evaluated directly against com-
peting methods shown in the table, we also computed each
method’s Elo rating, which, unlike flat win rate, is able to
simultaneously capture the relative quality of more than 2
models [9].

Quality responses were ensured by three separate mech-
anisms:

• Prolific’s automatic vetting, which ensures that partic-
ipants whose survey responses are rejected too often
are kicked from the platform.

• Restriction to participants from the United States,
which is known to mitigate the frequency of fraudu-
lent responses [25].

• Filtering out participants via identifying survey re-
sponses which incorrectly answer control questions.
By this process, we eliminated 20 participants, result-
ing in a filtered total of 147 participants.

For our overall evaluations, we also evaluated against the
10 checkpoints taken throughout model training in order
to increase coverage across skill levels for our Elo calcu-
lations.

In our physical plausibility survey, we ask “Which dance
is more physically plausible?”, but otherwise the survey is
exactly the same.

Over the course of 24 days, we collected responses from
all of the raters and plot them below in a win table. We com-
pute our Elo and win rate metrics from this table’s numbers.
Elo was computed using the Elo package in Python by ran-
domly sorting all matchups and obtaining the average Elo
over 1000 trials. See Tab. 4 for the raw win numbers across
all of the methods we tested.

For our confidence intervals, we treated each pair of
methods independently, and then each win or fail as an in-
dependent Bernoulli trial, computing the 95% confidence
interval based on the number of wins and fails for that pair
(Binomial distribution).

B. FACT and Bailando
We use the official implementation for our FACT experi-

ments. We noted that the published FACT checkpoints were
not fully trained, so we re-trained the model from scratch for

Figure 7. A screenshot of the user interface from our surveys. We
use simple stick figures as the skeleton for our dance to (1) ensure
fair comparisons with Bailando, which is difficult to rig due to
the fact that it operates in Cartesian space, and (2) computational
efficiency.

300k steps, following the original paper [33]. After infer-
ence, we downsample the model predictions to 30 FPS and
perform forward kinematics. We also use the official Bai-
lando implementation and their published checkpoints for
inference. After inference, we downsample the predictions
to 30 FPS and render the joint positions directly.

C. Metrics and Evaluation
For automatic evaluation (PFC, beat alignment, Distk,

and Distg), we sampled 5-second clips from each model,
using slices taken from the test music set sampled with a



Method A / Method B

C
he

ck
po

in
t2

00

C
he

ck
po

in
t4

00

C
he

ck
po

in
t6

00

C
he

ck
po

in
t8

00

C
he

ck
po

in
t1

00
0

C
he

ck
po

in
t1

20
0

C
he

ck
po

in
t1

40
0

C
he

ck
po

in
t1

60
0

C
he

ck
po

in
t1

80
0

C
he

ck
po

in
t2

00
0

G
ro

un
d

Tr
ut

h

FA
C

T

E
D

G
E

(J
+C

’(
w

=
2)

)

E
D

G
E

(J
+C

(w
=

2)
)

E
D

G
E

(J
(w

=
2)

)

E
D

G
E

(w
=

2)

B
ai

la
nd

o

E
D

G
E

(J
+C

O
O

D
(w

=
2)

)

E
D

G
E

(C
O

O
D

(w
=

2)
)

E
D

G
E

(J
+C

(w
=

1)
)

E
D

G
E

(J
(w

=
1)

)

E
D

G
E

(J
+C

’(
w

=
1)

)

FA
C

T
(O

O
D

)

B
ai

la
nd

o
(O

O
D

)

Checkpoint 200 0 3 3 3 1 2 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0
Checkpoint 400 37 0 4 0 1 0 0 2 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 2
Checkpoint 600 37 36 0 4 3 0 1 2 1 1 2 7 0 1 2 0 0 0 0 0 1 1 1 16
Checkpoint 800 37 40 36 0 9 5 5 0 4 0 1 10 1 4 1 2 1 0 1 0 2 1 7 16
Checkpoint 1000 39 39 37 31 0 11 1 7 9 4 4 19 6 5 6 2 16 3 1 0 1 0 15 17
Checkpoint 1200 38 40 40 35 29 0 17 13 13 8 9 21 6 11 11 14 22 7 4 0 7 1 27 24
Checkpoint 1400 40 40 39 35 39 23 0 14 11 11 20 27 5 43 14 18 33 21 16 0 7 5 29 34
Checkpoint 1600 39 38 38 40 33 27 26 0 19 15 18 25 5 34 21 20 20 13 8 0 5 5 26 33
Checkpoint 1800 40 39 39 36 31 27 29 21 0 29 22 28 8 35 26 30 30 4 21 0 4 5 30 30
Checkpoint 2000 40 39 39 40 36 32 29 25 11 0 12 23 7 49 26 18 29 5 19 0 8 8 31 28
Ground Truth 27 28 26 27 24 19 8 10 6 16 0 66 0 24 0 0 0 0 0 404 0 0 0 0
FACT 28 28 21 18 9 7 1 3 0 5 4 0 0 7 0 0 0 0 0 137 0 0 0 0
EDGE (J+C’ (w = 2)) 14 14 14 13 8 8 9 9 6 7 0 0 0 0 58 0 0 0 0 0 71 62 0 0
EDGE (J+C (w = 2)) 48 48 47 44 43 85 53 62 61 47 46 63 0 0 49 53 82 42 65 383 0 0 167 154
EDGE (J (w = 2)) 32 32 30 31 26 39 36 29 24 24 0 0 82 41 0 45 87 0 0 446 83 80 0 0
EDGE (w = 2) 17 18 18 16 16 22 18 16 6 18 0 0 0 37 45 0 85 0 0 353 0 0 0 0
Bailando 18 18 18 17 2 14 3 16 6 7 0 0 0 8 3 5 0 0 0 193 0 0 0 0
EDGE (J+C OOD (w = 2)) 13 13 13 13 10 19 5 13 22 21 0 0 0 36 0 0 0 0 57 0 0 0 0 0
EDGE (C OOD (w = 2)) 12 12 13 12 12 22 10 18 5 7 0 0 0 13 0 0 0 21 0 0 0 0 0 0
EDGE (J+C (w = 1)) 0 0 0 0 0 0 0 0 0 0 256 523 0 277 214 307 467 0 0 0 0 0 0 0
EDGE (J (w = 1)) 14 14 13 12 13 7 7 9 10 6 0 0 69 0 57 0 0 0 0 0 0 75 0 0
EDGE (J+C’ (w = 1)) 14 14 13 13 14 13 9 9 9 6 0 0 78 0 60 0 0 0 0 0 65 0 0 0
FACT (OOD) 17 16 16 10 2 7 5 8 4 3 0 0 0 20 0 0 0 0 0 0 0 0 0 73
Bailando (OOD) 17 15 1 1 0 10 0 1 4 6 0 0 0 33 0 0 0 0 0 0 0 0 29 0

Table 4. This table shows the total number of wins of Method A against Method B across our large-scale user study. For the method names,
“J” means Jukebox features, “C” means CCL, “C′” means an early CCL prototype, w means guidance weight, OOD means out-of-domain
(in-the-wild), and each “Checkpoint N” method refers to the checkpoint taken from epoch N of training, as seen in Fig. 6.

stride of 2.5 seconds as music input. For qualitative eval-
uation via the Prolific study, we sampled 10-second clips
from each model, using slices taken from the test music set
sampled with a stride of 5 seconds as music input.

To extract features for FID and diversity results, we di-
rectly use the official FACT GitHub repository, which bor-
rows code from fairmotion.

D. PFC
We explain two implementation details of PFC:

1. The PFC equation (Eq. (12)) depends on the acceler-
ation of the center of mass; since masses are not ex-
plicitly annotated in the AIST++ dataset, we use the
acceleration of the root joint as a practical approxima-
tion.

2. The PFC equation (Eq. (12)) normalizes only the COM
acceleration, and not the foot velocities. Under the as-
sumptions of static contact, a body with at least one
static foot is able to generate arbitrary (within physical
reason) amounts of COM acceleration. Under these
assumptions, two sequences where the root accelera-
tion differs but the foot velocity is the same are equally

Figure 8. PFC decreases throughout training.

plausible. In contrast, two sequences with the same
root acceleration but different foot velocities are not
equally plausible.

We perform an analysis in which we take the same
checkpoints as from Sec. 4.3 and evaluate their PFC scores.

As can be seen from Fig. 8, PFC scores tend to improve
over the course of training, providing further evidence that
this metric measures physical plausibility.

E. In-the-wild Music
We use the below songs for our in-the-wild music demos:



• Doja Cat - Woman

• Luis Fonsi - Despacito ft. Daddy Yankee

• ITZY - LOCO

• Saweetie - My Type

• Rihanna - Only Girl (In The World))

F. Hyperparameters
Hyperparameter Value

Optimizer Adan [61]
Learning Rate 4e-4

Diffusion Steps 1000
β schedule cosine

Motion Duration 5 seconds
Motion FPS 30

Motion Dimension 151
Classifier-Free Dropout 0.25

Num Heads 8
Num Layers 8

Transformer Dim 512
MLP Dim 1024
Dropout 0.1

EMA Steps 1
EMA Decay 0.9999

G. Guidance Weight at Inference Time
In our experiments, we find that dropping out the guid-

ance at early denoising steps (i.e. set w = 0 from step 1000
to step 800) further helps to increase diversity. We perform
this dropout for the version of our model sampled at w = 1,
dropping out 40% of the steps.

H. Editing Evaluation
We conduct a human evaluation to demonstrate that edit-

ing techniques do not compromise quality compared to un-
constrained generation. The study compared unconstrained
clips with a diverse collection of edited clips. The edited
clips achieve a 48% win rate against the clips generated
from scratch, indicating that editing preserves the quality.

I. Memory-efficient Jukebox Implementation
Jukebox extraction implementations from previous work

[3, 7] are limited in memory efficiency (cannot load in the
full model on a GPU with 16GB VRAM) and speed on short
clips (performs inference as if the clip has full sequence
length).

We improve upon these implementations and develop a
new implementation that (1) improves memory efficiency
two-fold and (2) speeds up extraction time 4x for 5-second
clips.

• For memory efficiency, we use HuggingFace Accel-
erate to initialize the model on the “meta” device fol-
lowed by loading in the checkpoint with CUDA, mean-
ing that only half of the memory is used (using the
traditional loading mechanism, PyTorch does not de-
allocate the initial random weights allocated before the
checkpoint is loaded in).

• For speed, we adapt the codebase to accept and per-
form inference on shorter clips. Our new implemen-
tation takes only ∼5 seconds for a 5-second clip on a
Tesla T4 GPU.

These improvements make extracting representations
from Jukebox more accessible to researchers and practition-
ers.

Additionally, to downsample to 30 FPS we use librosa’s
resampling method with “fft” as the resampling type to
avoid unnecessary slowness.

We plan to release this new implementation together
with our code release.

J. Long-Form Generation
Shown below is the pseudocode for long-form sampling.

1 def long_generate():
2 z = randn((batch, sequence, dim))
3 half = z.shape[1] // 2
4 for t in range(0, num_timesteps)[::-1]:
5 # sample z from step t to step t-1
6 z = p_sample(z, cond, t)
7 # enforce constraint
8 if t > 0:
9 z[1:,:half] = z[:-1,half:]

10 x = z
11 return x

K. Rigging
In order to render generated dances in three dimensions

for our website, we export joint angle sequences to the FBX
file format to be imported into Blender, which provides the
final rendering. The character avatar used in all our renders
except for those of dances from Bailando is “Y-Bot”, down-
loaded from Mixamo. Dances from Bailando are rendered
using ball-and-rod stick figures to ensure fair comparison,
since dances are generated in Cartesian joint position space.
Although inverse kinematic (IK) solutions are available, we
sought to avoid the potential introduction of extraneous ar-
tifacts caused by poorly tuned IK, and instead rendered the
joint positions directly. We perform no post-processing on
model outputs.

L. Extra Figures



Figure 9. Joint-wise Conditioning: EDGE can generate upper body motion given a lower body motion constraint.

Figure 10. Joint-wise Conditioning: EDGE can generate lower body motion given an upper body motion constraint.



Figure 11. Temporal Conditioning: In-Betweening Given start and end poses, EDGE can generate diverse in-between dance sequences.

Figure 12. Temporal Conditioning: Continuation Given a seed motion, EDGE can continue the dance in response to arbitrary music
conditioning.


