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1. Algorithm Details

In this appendix, we provide material that could not be in-
cluded in the main manuscript due to space constraints. First,
Section 1 presents the detailed algorithm of the proposed
method. Section 2 provides insights about how IPC works
from the perspective of label aggregation. Finally, Section 4
presents additional experimental results of DMLP.

Algorithm 1 delineates the proposed DMLP in detail,
where the equation labels are consistent with the main text
of the paper. Firstly, the feature extractor G(·; θG) is pre-
trained via a self-supervised learning stage. IPC (Line 5-9)
and EAC (Line 12-16) are two mutually reinforcing label
correcting processes of DMLP. After m iterations of opti-
mization, the purified labels Yt

∗ are obtained. Finally, the
well-trained classifier C(·;wc) can directly infer on test data
or re-train a LNL framework with Yt

∗ to further boost per-
formance.

2. Detailed Interpretation of IPC

In this section we further discuss how our IPC utilizes the
decoupled feature representation to model the risk resulted
from label noises from the perspective of label aggregation.
In the main part of our paper, the IPC process seeks to predict
the labels of validation samples via its optimally estimated
linear estimator as

y′v,i(Yt) = Y T
t Ft(F

T
t Ft)

−1fv,i. (1)

Since the representation features are normalized after self-
supervised training, thus (FT

t Ft)
−1 can be interpreted as the

inversed covariance matrix of distribution from training data,
and the estimated covariance matrix maps the feature of
validation data into the observation space of training data

f ′v,i = (FT
t Ft)

−1fv,i. (2)

With the definition of Eq. (2), the term of matrix multipli-
cation in Eq. (1) can be interpreted as a similarity matrix

α = Ft

[
(FT

t Ft)
−1fv,i

]
= Ftf

′
v,i, (3)

each entry of vector α ∈ Rb represents the similarity be-
tween f ′

v,i and each training sample of Ft. Finally, the
output prediction on validation data can be regarded as the
attentive aggregation over all labels in a training batch

y′v,i(Yt) = Y T
t α. (4)

Ideally, since the self-supervised training process is
trained without noisy labels in a contrastive manner, the
feature distribution intrinsically forms a cluster-like mani-
fold, i.e. samples with the same semantic label are closer in
feature space

fTt,jf
′
v,i > fTt,kf

′
v,i when yv,i = yt,j , yv,i ̸= yt,k. (5)

Consequently, when a training sample in Ft is more simi-
lar to the validation sample, its semantic label will contribute
more to prediction y′v,i(Yt) and vice versa. Therefore, when
penalizing on the discrepancy between y′v,i(Yt) and yv,i, we
put more penalty on training samples with similar feature
distribution but different labels from (xv,i, yv,i), which is
more likely to be noisy samples.

3. Derivation of Optimal Regression
In Eq. (4) of the manuscript, we take the Frobenius norm

as objective for regression, thus we have

L = ∥σ(αYt)− Ftw∥2 + λ∥w∥2

= Tr([σ(αYt)− Ftw]
⊤[σ(αYt)− Ftw]) + λ∥w∥

= Tr(w⊤F⊤
t Ftw)− 2Tr(w⊤F⊤

t σ(αYt)) + λ∥w∥2 + C

where C is a constant unrelated to w, Tr(·) denotes the Trace
of matrix. With the property ∂Tr(A⊤B)

∂A = B, we can obtain
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Algorithm 1 The workflow of DMLP.

Input: Noisy training set Dt, clean validation set Dv, fea-
ture extractor G(·; θG), classifier C(·;wc), batch size b,
max iterations m, period for regular label substitution
T .

Procedure:
1: Self-supervised training for G(·; θG)
2: Generate features f by Eq. (1)
3: for i = 1 to m do
4: /*IPC starts*/
5: {Ft, Yt}← SampleMiniBatch(f,Dt,b)
6: Calculate closed-form solution w∗(Yt) by Eq. (6)
7: Predict validation set labels y′v by Eq. (7)
8: Calculate label purification loss Lval(Yt) by Eq. (8).
9: Update training labels Yt in backward process.

10:
11: /*EAC starts*/
12: Calculate loss for the classifier C(·;wc) by Eq. (10)
13: Update classifier parameter wc in backward process.
14: if i = nT then
15: Update training labels Yt by Eq. (11)
16: end if
17: end for
Output: The purified labels Yt

∗.

the necessary condition of optimal w∗ via ∂L
∂w = 0

∂L
∂w

= 2F⊤
t Ftw − 2F⊤

t σ(αYt) + 2λw

= 2(F⊤
t Ft + λI)w − 2F⊤

t σ(αYt) = 0

Hence we have the closed-form optimal regression parameter
w∗(Yt)

w∗(Yt) = (F⊤
t Ft + λI)−1F⊤

t σ(αYt)

w∗(Yt)
⊤fv,i = σ(αYt)

⊤Ft

(
Ft

⊤Ft + λI
)−1

fv,i

4. Experimental Details
4.1. Experimental Settings

For the CIFAR10/100 dataset, most parameters of the
SimCLR [3] algorithm are set as suggested in the original
implementation. The classifier C(·;wc) is trained with a
learning rate of 0.005 and batch size of 500, while the batch
size for the label purifier in IPC is set to 7,000. The classifier
and the purifier are both trained with the Adam optimizer.
For DMLP-Mix, all the hyper-parameters of DivideMix are
set as the authors suggested. As for the real-world Cloth-
ing1M dataset, we follow the original protocol to split the
training and testing sets. The given validation set is utilized
for meta-learning. The batch sizes for the classifier and the

label purifier in IPC are set to 500 and 10,000 respectively.
The learning rate for the former is set to 0.03 while for the
latter is 0.02. Similar to the setting on CIFAR-10/100, the
Adam optimizer is also adopted.

4.2. Details of Compared Methods

As discussed in manuscript, DMLP is compared with
most recent relevant works. Specifically, the competing
works can be coarsely categorized into two group, noisy
sample detection and label correction. The former usually
identifying and reducing the importance of suspicious false-
labeled samples during training, either by directly selecting
the clean samples out of training set (Co-teaching [9], Co-
teaching+ [21], Iterative-CV [2], Sel-CL+ [14], ELR+ [15],
C2D [24], DivideMix [11], REED [22], MOIT+ [16]) or
adjusting the soft weight of each training sample (RRL [13],
M-correction [1], GCE [8], CDR [18]). The latter aims
to correct the corrupted labels and augment the training
data. Typical paradigms are correction-by-prediction, i.e.,
utilizing the prediction of deep model to correct labels, in-
cluding Joint-Optim [17], PENCIL [20], Self-Learning [10].
Others resort to a small set of clean validation set with
meta-learning training strategies, i.e., Meta-Learning [12],
MLC [25], MSLC [6], Meta-Cleaner [7], Meta-Weight [5],
FaMUS [19], MSLG [4], Zhang, et al. [23].

4.3. More Applications of DMLP

As mentioned in the manuscript, DMLP can be applied
to work collaboratively with the existing LNL framework
to boost performance. To further verify the effectiveness
of DMLP, we also plot the accuracy curve of the proposed
DMLP and its baseline methods in Fig. 4-9. It is observed
that all the applications of DMLP perform consistently better
over their corresponding baselines throughout the training
process, especially under high-level noise cases.

4.4. Details of Experimental Result

• Detailed Comparison with Coupled Methods. In the
manuscript we compare DMLP against coupled meta label
correction methods MLC [25] and MSLC [6] with same
self-supervised pretrained weights. Here we provide more
detailed comparison results with the original implemented
MLC and MSLC in terms of corrected label accuracy and
backbone quality (revealed by linear evaluation accuracy).
As shown in Fig. 1, by simplifying the complex coupled
meta-learning process into individual representation learning
and non-nested meta label purification, DMLP can achieve
superior performance to these methods in the sense of puri-
fied label accuracy and meanwhile obtain representations of
better quality, which further verifies our empirical findings
of Fig. 1 in the manuscript.
• Detailed Comparison with Decoupled Baselines. The
proposed non-nested meta label purifier plays a crucial role



Table 1. Investigation on the influence of meta-purification on
CIFAR-10.

Method Noisy ratio
20% 50% 80% 90%

SimCLR-DivideMix Best 92.2 91.2 92.1 85.7
Last 82.8 81.3 77.0 10.9

DMLP-DivideMix Best 96.3 95.8 94.5 94.3
Last 96.2 95.6 94.3 94.0

in DMLP. To fairly verify its superiority to existing label
correction methods, we train MLC and MSLC in a decou-
pled way where their backbone is fixed with SimCLR self-
supervised weights as in DMLP. As shown in Table 2, decou-
pled training scheme can largely boosts their performance,
which is also in line with our empirical findings in Fig. 1
of the manuscript. Besides, it can be obviously observed
that DMLP-Naive shows great advantage over the decou-
pled MLC and MSLC across all the settings especially under
high noise, demonstrating the effectiveness of the non-nested
meta label purifier.

• Effect of the Meta-purification on DMLP-DivideMix.
We further investigate the effect of the non-nested meta
label purifier on the afterward LNL framework in DMLP-
DivideMix setting. To do this, we initialize a model with
SimCLR and apply DivideMix to train the model as our
baseline. According to the results in Table 1, the accuracy
suffers from a significant performance drop when remov-
ing the non-nested meta label purifier from our pipeline
(i.e, SimCLR-DivideMix), especially for severe label noise
cases, this can be attributed to the DNN inevitably gradually
memorizes the noisy labels when updating the backbone and
classifier simultaneously. In contrast, in DMLP-DivideMix,
labels purified by the meta-learner yield higher accuracy,
guiding the afterward LNL framework to learn more robust
and discriminative decision boundaries.

• Detailed Comparison on the label accuracy. In addition
to the comparison of 50% and 90% noise between MLC,
MSLC and DMLP on the CIFAR-10 in the manuscript, we
also visualize the label accuracy curves for 20% and 90%
noise. As shown in Fig. 2, DMLP consistently shows great
superiority over MLC and MSLC throughout the training
process. Moreover, Fig. 3 shows corrected label accuracy
curve of DMLP under symmetric and asymmetric noise
settings on CIFAR-10, which demonstrates that high quality
labels can be generated by DMLP across all noisy settings.

• Experimental results with statistical significance. Be-
sides the results shown in the main text, we provide detailed
results with Standard Deviations (STD) to show the statis-
tical significance of proposed method on CIFAR-10/100.
Which are shown in Table 4.

4.5. EAC as Classifier

Besides DMLP-Naive, we can also take the well-trained
linear classifier C(·;wc) in the non-nested meta label purifier
for the test set prediction, this is termed as DMLP-EAC. As
shown in Table. 3, though DMLP-EAC is only an individual
linear classifier, it can also perform well especially under
high noisy settings on CIFAR-10/100. Moreover, DMLP-
EAC can already outperform most of state-of-the-art LNL
methods by a considerable margin and achieve comparable
performance to DMLP-Naive on the Clothing1M dataset,
which further demonstrates that DMLP is more suitable to
tackle with real-world noise. Finally, Table. 3 shows the com-
parison between DMLP-IPC and REED (no stage-3) [22],
which simply trains a linear classifier on well-established
representations without extra operations. Though REED (no
stage-3) achieves overall good results, DMLP-IPC can still
obtain consistent performance gains over this baseline under
all noise settings, especially on the high noise level.
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Figure 7: Corrected label accuracy curve of DMLP under symmetric (left), asymmetric (middle) noise settings
on CIFAR-10.

Figure 8: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-10 under different noise settings.

Figure 9: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-100 under different noise settings.
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Figure 4. Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-10 under different noise settings.
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Figure 7: Corrected label accuracy curve of DMLP under symmetric (left), asymmetric (middle) noise settings
on CIFAR-10.

Figure 8: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-10 under different noise settings.

Figure 9: Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-100 under different noise settings.
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Figure 5. Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-100 under different noise settings.
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Figure 10: Accuracy curve of DMLP-CDR and CDR on CIFAR-10 under different noise settings.

Figure 11: Accuracy curve of of DMLP-CDR and CDR on CIFAR-100 under different noise settings.
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Figure 6. Accuracy curve of DMLP-CDR and CDR on CIFAR-10 under different noise settings.
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Figure 10: Accuracy curve of DMLP-CDR and CDR on CIFAR-10 under different noise settings.

Figure 11: Accuracy curve of of DMLP-CDR and CDR on CIFAR-100 under different noise settings.
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Figure 7. Accuracy curve of of DMLP-CDR and CDR on CIFAR-100 under different noise settings.
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Figure 12: Accuracy curve of DMLP-Co-teaching and Co-teaching on CIFAR-10 under different noise settings.

Figure 13: Accuracy curve of of DMLP-Co-teaching and Co-teaching on CIFAR-100 under different noise
settings.
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Figure 8. Accuracy curve of DMLP-Co-teaching and Co-teaching on CIFAR-10 under different noise settings.
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Figure 12: Accuracy curve of DMLP-Co-teaching and Co-teaching on CIFAR-10 under different noise settings.

Figure 13: Accuracy curve of of DMLP-Co-teaching and Co-teaching on CIFAR-100 under different noise
settings.

18

Figure 9. Accuracy curve of of DMLP-Co-teaching and Co-teaching on CIFAR-100 under different noise settings.
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