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1. Detailed Experimental Results

Quantitative Results. To further verify the regulariza-
tion effect of SANM on the activation map, we visualize the
activation maps of DivideMix and SANM (DivideMix) for
both correctly and incorrectly labeled samples. As shown
in Fig. 1, for DivideMix, due to the influence of noisy sam-
ples, the activation maps of correctly labeled samples are
focused on specific areas of the target instead of covering
the whole object, while the results of mislabeled ones pay
more attention to the meaningless background area, result-
ing in poor representation quality. By contrast, the results of
SANM (DivideMix) cover the central regions of the objects
for both samples and more information can be covered in
our features, even for the samples that are not object-centric
(see Fig. 3), indicating that SANM can alleviate confirma-
tion bias and prevent models from over-fitting to noisy la-
bels by imposing explicit regularization on the peak loca-
tions. Finally, we also provide the visualization results by
the reconstruction component within the proposed SANM
on CIFAR-10, as shown in Fig. 2. The results indicate that
the model trained with the proposed masking reconstruc-
tion objective is capable of generating high-quality recon-
structed images that cover most of the semantic informa-
tion, and this in turns helps the model alleviate the negative
effect of noisy labels.

Visualization of Clothing1M. CIFAR-10/100 are rela-
tively small-scale and lack of diversity, therefore, besides
that the Fig.1 provided in the manuscript, we further visual-
ize more examples on real-world Clothing1M dataset to ver-
ify our motivation. As shown in Fig. 4, similar phenomena
to the results on CIFAR-10 can be observed as well. Acti-
vation maps of mis-predicted samples by the model trained
with clean labels are usually focused on their foreground
areas. By contrast, when the model is trained with noisy la-
bels, it tends to generate results focused on the meaningless
background area for the mis-predicted samples. And even
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Figure 1. Activation maps for samples with noisy and clean labels
between DivideMix and SANM (DivideMix).
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Figure 2. The reconstruction result of SANM on CIFAR-10 of
SANM (DivideMix). (a) Original images. (b) The corresponding
reconstruction results.

for cases where the prediction is correct, the high-activated
region drifts to irrelevant areas of the object, rather than the
main regions of the object. It supports the empirical findings
in our manuscript that model trained with mislabeled sam-
ples is likely to overfit to some corner parts of the object
from noisy data or remember the less informative regions
(i.e., background).

Influence of Mask Sizes. We further investigate the
effect of different aspect ratios δ (i.e., Eq. 3) in the
manuscript) on CIFAR-10/100, the results are shown in Ta-
ble. 1 and 2, where ”Fixed” denotes adopting a fixed aspect
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Figure 3. The activation maps of images where objects are not in
the centre on CIFAR-10 dataset by SANM (DivideMix).

Table 1. Influence of different aspect ratios δ on CIFAR-10.

Dataset CIFAR-10
Method/Noise ratio 20% 50% 80% 90%
Fixed (0.5) 95.5 94.4 93.2 90.5
Fixed (0.8) 96.0 94.8 93.7 91.0
Fixed (0.9) 96.0 95.0 93.8 90.8
Uniform (0.5) 96.2 95.5 94.4 91.8
Uniform (0.8) 96.4 95.8 94.6 92.3
Uniform (0.9) 96.4 95.7 94.6 92.0

Table 2. Influence of different aspect ratios δ on CIFAR-100.

Dataset CIFAR-100
Method/Noise ratio 20% 50% 80% 90%
Fixed (0.5) 79.7 76.7 67.8 42.8
Fixed (0.8) 80.5 76.9 68.1 42.5
Fixed (0.9) 80.3 77.2 68.0 42.7
Uniform (0.5) 80.6 77.5 68.4 43.0
Uniform (0.8) 81.2 78.2 68.7 43.5
Uniform (0.9) 80.9 78.0 68.3 43.3

ratio for all samples while ”Uniform” represents that δ is
sampled from a uniform distribution for each sample. As
the results show, uniformly-sampled δ performs better than
using a fixed aspect ratio. And the results indicate that the
performance of SANM is not sensitive to the choice of δ
within a certain coarse range.

Experimental Details and Results on Real-world
Noisy Datasets. On Clothing1M, we adopt ResNet-50 as
the backbone, which is trained for 80 epochs with a batch
size of 64. The Adam optimizer is used and the initial
learning rate is 0.002 with a reduction factor of 10 after 40
epochs. On Animal-10N, we follow the previous method
SSR [2] to utilize VGG-19 as backbone and train for 150
epochs with a batch size of 64. The SGD optimizer is
adopted and the learning rate is initially set as 0.02 with
a reduction factor of 10 after 50 and 100 epochs. Table 3
describes the results on the Animal-10N. It shows that com-
pared with previous LNL competitors, i.e., ActiveBias [1],
PLC [9], Co-teaching [3], SELFIE [6], CREMA [8] and
SSR [2], SANM achieves high classification accuracy of

Table 3. Comparison with state-of-the-art methods in test accuracy
on Animal-10N.

Method Test Accuracy (%)

Cross-Entropy 79.4
ActiveBias [1] 80.5
PLC [9] 83.4
Co-teaching [3] 80.2
SELFIE [6] 81.8
CREMA [8] 84.2
SSR [2] 88.5

SANM(SSR) 89.3

89.3% and sets the new state-of-the-art, indicating that
the proposed method is able to handle fine-grained noisy
datasets (i.e., the noisy samples within Animal-10N are
mostly caused by misjudgement on semantically similar
sample pairs, e.g., cat and lynx) as well.

Generality of SANM. To demonstrate the generality of
SANM, we investigate more applications leveraging SANM
to boost current mainstream LNL frameworks. Specifically,
the naive CE, Co-teaching [4], CDR [7], and ELR+ [5] are
chosen as baselines in our experiments. Here we list both
the last and best performance of these baselines and their
corresponding SANM-improved versions in Table. 4, where
consistent performance boost can be observed for all the
corresponding baselines across all the noisy cases. Even
when training with the naive CE loss, leveraging the pro-
posed SANM framework can already achieve a consider-
able performance compared with other LNL frameworks
(e.g., CO-teaching, CDR). Therefore, all the results ver-
ify the generalization of SANM to boost existing LNL ap-
proaches.

Experimental results with statistical significance. Be-
sides the results shown in the main text, we provide detailed
results with Standard Deviations (STD) to show the statis-
tical significance of proposed method on CIFAR-10/100.
Which are shown in Table 5.
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Figure 4. The activation maps of the trained base model on Clothing1M dataset.

Table 4. Comparison between the LNL methods and their SANM applications with symmetric noise on CIFAR-10/100. Specifically, the
9-layer CNN is adopted as the backbone network of Co-teaching.

Dataset CIFAR-10 CIFAR-100
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