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A. More experimental results
As shown in Table 1, we further list the commercial

quantization toolkits for existing AI accelerate devices,
NNIE [2] and Vitis-AI [3], which only support 8-bit for
weights and activations. For EDSR model [5], NNIE with
upscaling of 4 causes severe PSNR drop on these four
datasets, which is 0.301 dB, 0.198 dB, 0.134 dB and 0.204
dB, respectively, performs even worse on upscaling of 2.
VitisAI could get better results but still cause significant
performance degradation (> 0.1 dB) on various datasets
with upscaling of 2 and 4. In the contrast, our proposed
method could significantly outperform the NNIE and Vitis-
AI, and better than the bicubic interpolate, only cause 0.025
dB drop on Set5, 0.052 dB drop on Set14, 0.026 dB drop
on BSD100 and 0.079 on Urban100 with upscaling of 4,
greatly reducing the performance gap between quantized
SR model and the full-precision model. For SRResNet
model [4], the performance comparison shows much sim-
ilar with EDSR, NNIE and VitisAI cause significant drop.
For instance, NNIE with upscaling of 2 causes 1.484 dB
drop on Set5, 1.026 dB drop on Set14, 0.669 dB drop on
BSD100 and 0.967 dB drop on Urban100, which shows that
they cause severe quantization error for image super resolu-
tion, can not be applied to low-level vision tasks directly.
But the low-precision SRResNet model with our proposed
post-training quantization method could achieve much bet-
ter performance, only causes PSNR drop within 0.03 dB
with upscaling of 4 on these four test sets. The extended
experiments further illustrate that our proposed method is
much more friendly to image super resolution than the ex-
isting PTQ methods.

B. Clipping values of activations
Figure 1 shows the lower and upper clipping values of

activations for different layers and bit-width settings. For
reference, we also plot the original minimum and maximum
values.As shown in Figure 1a, Figure 1b and Figure 1c, we
can see that the lower the bit width, the larger the difference
between the clipping values and the original range, espe-

cially when quantizing to 4-bit, more than half of the orig-
inal range is clipped off. Figure 1d shows that lower preci-
sion quantization prefers smaller activation range. which is
much consistent with image classification [1].

C. Combined with QAT

To demonstrate that our method could accelerate the con-
vergence of QAT, we shows the PSNR and SSIM values of
different epoch in the quantization aware training process
as shown in Figure 4. To show the trend of convergence, we
set the training epoch to 15 (10 in previous experiments),
we can see that, the model converges fast in the first several
epochs, leveling off at around the 10-th epoch on Urban100
dataset (Figure 4h). In the contrast, existing QAT meth-
ods for image super resolution almost require 30 to 1500
epochs to recover the performance drop, which shows that
QAT with our method could truly accelerate the deployment
of quantized models.

D. Visualization

Figure 2 and Figure 3 show more visual results on 4-
bit EDSR model and SRResNet model with upscaling of 4,
which are the most difficult task with post-training quanti-
zation in our experiments. The PSNR and SSIM reported
below the images are measured by the reconstructed image
and the corresponding HR image. As we can see that our
proposed method could truly provide a better visual perfor-
mance for image super resolution with low-bit compression.
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Table 1. PSNR(dB)/SSIM comparisons between existing post-training quantization methods and ours on EDSR and SRResNet of scale 4
and scale 2. The weights and activation of all the layers are quantized to 8-bit in this experiment.

Network Method Set5 (×4) Set14 (×4) BSD100 (×4) Urban100 (×4) Set5 (×2) Set14 (×2) BSD100 (×2) Urban100 (×2)

EDSR [5]

Baseline 32.485/0.899 28.815/0.788 27.721/0.742 26.646/0.804 38.193/0.961 33.948/0.920 32.352/0.902 32.967/0.936
Bicubic 28.420/0.810 26.000/0.703 25.960/0.668 23.140/0.658 33.660/0.930 30.24/0.869 29.560/0.843 26.880/0.840
NNIE [2] 32.179/0.892 28.617/0.783 27.587/0.737 26.442/0.797 37.420/0.955 33.505/0.916 32.050/0.898 32.514/0.931
VitisAI [3] 32.266/0.894 28.629/0.783 27.616/0.736 26.341/0.794 37.909/0.959 33.533/0.917 32.189/0.899 32.177/0.931
Ours 32.460/0.898 28.763/0.787 27.695/0.741 26.567/0.802 38.120/0.960 33.850/0.920 32.313/0.901 32.810/0.935

SRResNet [4]

Baseline 32.234/0.896 28.656/0.784 27.630/0.738 26.229/0.791 38.091/0.961 33.752/0.919 32.241/0.900 32.367/0.931
Bicubic 28.420/0.810 26.000/0.703 25.960/0.668 23.140/0.658 33.660/0.930 30.240/0.869 29.560/0.843 26.880/0.840
NNIE [2] 31.643/0.880 28.206/0.769 27.284/0.725 25.746/0.771 36.607/0.941 32.726/0.899 31.572/0.885 31.400/0.913
VitisAI [3] 31.956/0.889 28.392/0.771 27.459/0.729 25.907/0.779 37.465/0.956 33.173/0.912 31.876/0.892 31.498/0.922
Ours 32.207/0.895 28.619/0.783 27.618/0.738 26.191/0.790 38.032/0.960 33.648/0.919 32.212/0.900 32.210/0.930
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(a) EDSR×4 with 8-bit
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(b) EDSR×4 with 6-bit
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(c) EDSR×4 with 4-bit
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(d) EDSR×4 with 4, 6 and 8-bit

Figure 1. The clipping values of different layers with EDSR of upscaling of 4.
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Figure 2. Visual results of different methods on 4-bit EDSR models with upscaling of 4. The images are selected from Urban100
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Figure 3. Visual results of different methods on 4-bit SRResNet models with upscaling of 4. The images are selected from Urban100
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Figure 4. The PSNR(dB) and SSIM values of different epoch in QAT with the initialization of our proposed method. The top line represents
the PSNR values and the bottom line represents the SSIM values of Set5, Set14, BSDS100 and Urban100 datasets
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