Appendix

We provide details omitted in the main paper.

* Appendix A: a conceptual comparison of VQT with
other transfer learning methods.

* Appendix B: additional experiment details (cf. sec-
tion 4 of the main paper).

* Appendix C: additional experiment results and analy-
ses (cf. section 4 of the main paper).

* Appendix D: additional discussions.

A. Conceptual Comparison between VQT and
Transfer Learning Methods

We demonstrate the conceptual difference between vari-
ous transfer learning methods in Figure 7. Figure 7a shows
the pre-trained ViT backbone. Linear-probing (Figure 7b)
only updates the prediction head and keeps the rest of the
backbone unchanged, while fine-tuning (Figure 7c) updates
the whole backbone. HEAD2TOE (Figure 7d) takes inter-
mediate outputs of blocks within each Transformer layer
for predictions. In contrast, our VQT (Figure 7e) leverages
the summarized intermediate features of each Transformer
layer for final predictions.

B. Additional Experiment Details
B.1. Pre-training Setups

In subsection 4.2 and subsection 4.3 of the main paper,
we conduct our experiments on three types of pre-trained
backbones, Supervised [13], MAE [20], and CLIP [39]. We
briefly review these pre-training methods in the following.

Supervised. Given a pre-training data set Dpre-train

{(L;,y:)}¥), where I; is an image and y; € [C] is the an-
notated class label, we aim to train a network that classifies
images into C classes. The network consists of a backbone
network f to extract features and a linear classifier A to pre-
dict class labels. Specifically, let p; = h(f(I;)) € R®
be the output of the whole network. Each element of p;
represents the score of I; being classified to each of the C
classes. We apply the standard cross-entropy loss to max-
imize the score of classifying I, to be the class y;. After
pre-training, we discard the classifier & and only keep the
pre-trained backbone f for learning downstream tasks.

In our experiments, we use ViT-B/16 as the backbone
architecture. In subsection 4.2, we use the ImageNet-1K
pre-trained backbone following HEAD2TOE [15]. In sub-
section 4.3, we use the ImageNet-21K pre-trained backbone
following VPT [23]. To save the pre-training time, we use

the checkpoints of these backbones released on the official
GitHub page of Vision Transformer [13]*.

MAE. The learning objective of MAE is to reconstruct
an image from its partial observation. Specifically, we di-
vide an input image I into N fixed-sized non-overlapping
patches {T(™}N_, following ViT [13]. Then, we randomly
mask K% of the patches. Let I/ be the set of indices of the
unmasked patches and [U/| = (1 — K%) x N. The goal
is to reconstruct the masked patches using the unmasked
ones {I(|i € U}. To achieve this, we first process the un-
masked patches by a ViT encoder f to generate the output
Zy = [azg\l/})7 e ,w?&‘“‘)], where 4y, - -+ , i € U. Then,
we expand Z; to have N tokens by filling K% x N mask
tokens ™%X into the positions of the masked patches to
generate Z,;. The mask token ™% is a learnable pa-
rameter and indicates the missing patches to be predicted.
Finally, we use a decoder h to generate the reconstructed
image I = h(Zyy). The whole encoder-decoder network is
trained by comparing I with I by using the mean squared
error (MSE). Similar to BERT [25], the loss is computed
only on the masked patches. After pre-training, we discard
the decoder h and only keep the encoder f as the backbone.
In subsection 4.3, we use the ViT-B/16 backbone released
in the official MAE [20] GitHub page”.

CLIP. CLIP leverages text captions of images as supervi-
sions for pre-training a visual model. The learning objective
is to predict which text caption is paired with which image
within a batch. Specifically, given a batch of image-caption
pairs {(I;, C;)}2_,, where I, is an image and C; is the cap-
tion, CLIP uses a image encoder f and a text encoder h to
map I; and C; into a multi-modal embedding space, re-
spectively. Let Z; = [f(I1), -+, f(Ip)] € RP*B and
Zc = [h(Cy),--- ,h(CE)] € RP*B be the output im-
age and text features. We then compute pair-wise sim-
ilarity between the columns of Z; and Z, resulting in
S = ZTZ- € RP*B. The diagonal elements in S are the
scores for the correct image-caption pairings while the rest
elements are incorrect pairings. CLIP minimizes the cross-
entropy losses computed on the rows and the columns of S
to learn f and h. After pre-training, we discard h and keep
the vision encoder f as the pre-trained backbone. In sub-
section 4.3, we use the ViT-B/16 backbone released in the
official CLIP [39] GitHub page®.

B.2. Feature Selection via Group Lasso

We provide more details for feature selection based on
group lasso as mentioned in subsection 3.2 of the main pa-

“https : //github . com/ google - research /vision_
transformer

Shttps://github.com/facebookresearch/mae

6https://qithub.com/openai/CLIP

T... T... 8 T...

Transformer Layer L

f- i -

Transformer Layer L, Transformer Layer L,

! o w
! ! !

1 1 1

Transformer Layer L

(2) (b) (©

Forward
' t t ;
f f o
Parameters
[— Transformer Layer LM Transformer Layer L
. -
Parameters
—— Transformer Layer L, Transformer Layer L
T T T Intermediate
Features
e 7 &
T / Unmodified w.rt
Tunable Paramet
— Transformer Layer Ly Transformer Layer Ly
1 1 i "
d (e)

Figure 7. Conceptual comparison between different transfer learning methods (a) ViT Backbone. (b) Linear-Probing. (c) Fine-Tuning.

(d) Head2Toe [15]. (d) VQT (Ours).

per. In VQT, we concatenate the newly summarized fea-
tures {Z/, .1 }M=3 with the final “CLS” token ' for
linear probing. Let Hy € RMDPT+D pe the concate-
nated features and Wy, € RMDPTHD)XC pe the weights
of the linear classifier, where C' is the number of classes.
After we learn the additional query tokens in VQT, we
can freeze them and optionally employ group lasso to re-
duce the dimensionality of H,;. Specifically, we follow
HEAD2TOE [15] to first train the linear classification head
with the group-lasso regularization |Wyy |2 1, which encour-
ages the /5 norm of the rows of Wy, to be sparse. Then, the
importance score of the ¢-th feature in Hy, is computed as
the ¢5 norm of the i-th row of Wy,;. Finally, we select a
fraction F' of the features H,; with the largest importance
scores and train a new linear head with the selected features.

B.3. Parameter Efficiency in Section 4.2

We provide the number of parameters for the transfer
learning methods compared in subsection 4.2 of the main

paper.

Linear-probing and full fine-tuning. For each task, lin-
ear probing only trains the prediction head and keeps the
whole pre-trained backbone unchanged. Therefore, we only
need to maintain one copy of the backbone that can be
shared across all the downstream tasks. Contrastingly, full
fine-tuning updates the whole network, including the back-
bone and the head, for each task. After training, each task
needs to individually store its own fine-tuned backbone,
thereby requiring more parameters.

VQT vs. HEAD2TOE. In subsection 4.2 of the main pa-
per, We compare VQT with HEAD2TOE by matching the
number of tunable parameters for each task in VTAB-1k.
We provide details for this setup. More comparisons of
VQT and HEAD2TOE can be found in subsection C.1.

HEAD2TOE [15] takes intermediate features from mul-
tiple distinct steps inside the pre-trained ViT backbone. For
the features from each step, HEAD2TOE chooses a window
size and a stride to perform average pooling to reduce the
dimensionality. After concatenating the pooled intermedi-
ate features, HEAD2TOE further decides the fraction F’ for
feature selection. In HEAD2TOE, the pooling window size,
pooling stride and F' are hyper-parameters picked based on
validation accuracy.

For fair comparisons of VQT and HEAD2TOE [15], we
match their numbers of tunable parameters used in differ-
ent tasks. As both VQT and HEAD2TOE leverage interme-
diate features while keeping the backbone unchanged, the
tunable parameters mainly reside in the final linear head.
We focus on matching the feature dimension input to the
classifier. First, we divide the 19 tasks in VTAB-1k into
three groups; each group corresponds to a pair of pool-
ing window sizes and strides that HEAD2TOE uses to gen-
erate the features before feature selection. Specifically,
in the three groups, HEAD2TOE generates 68K-, 815K-
, and 1.8M-dimensional features, respectively. Next, for
simplicity, we set /' = 0.1, which is the maximal F' in
HEAD2TOE’s hyper-parameter search grid, for HEAD2TOE
in all the 19 tasks. These results are obtained using the of-
ficial HEAD2TOE released code’. For VQT, we choose T
and F' to match the final feature dimensions (after feature
selection) used in HEAD2TOE. Specifically, weuse 7' = 1
and FF = 0.7, 7 = 10and FF = 1.0, and T = 20 and
F = 1.0 for the three task groups, respectively.

Comparison on the number of parameters. We summa-
rize the number of parameters needed for all the 19 VTAB-
1k tasks in Table 4. As linear-probing shares the backbone
among tasks and only adds linear heads that take the fi-
nal “CLS” token, it only requires 1.01x of the ViT-B/16
backbone parameters. By contrast, fine-tuning consumes

Thttps://github.com/google-research/head2toe

Total

Methods # of parameters
Scratch 19.01x
Linear-probing 1.01x
Fine-tuning 19.01x
HEAD2TOE 1.20x
VQT (Our) 1.22x

Table 4. Total numbers of parameters needed for all the 19 tasks,
for the methods compared in Table 1. Each number represents
how many times of one ViT-B/16 backbone’s parameters (86M)
are needed.

19.01 x of the ViT-B/16 because each task maintains its own
fine-tuned backbone. Compared to linear probing, VQT
and HEAD2TOE use larger feature dimensions for predic-
tion, thereby increasing the number of parameters in the fi-
nal linear heads. Even so, VQT and HEAD2TOE are still
parameter-efficient and need only 1.22x and 1.20x of the
backbone parameters to learn 19 tasks.

B.4. Additional Training Details

We provide training details for VQT, VPT [23] and
AdaptFormer [10] used in section 4.

For each task in VTAB-1k, we perform an 80/20 split on
the 1K training images to form a training/validation set for
hyper-parameter searching. After we pick the best hyper-
parameters that yield the best validation accuracy, we use
them for training on the original 1K training images. Fi-
nally, we report the accuracy on the testing set.

For training VQT with the ImageNet-1K backbone, we
set T to match the number of tunable parameters with
HEAD2TOE as described in subsection B.2. For training
VQT with the MAE backbone (results reported in Table 3),
we simply set 7' = 1 for all tasks in VTAB-1k. We then
perform a hyper-parameter search to select the best learn-
ing rate from {1.0,0.5,0.25,0.1,0.05} and the best weight
decay from {0.01,0.001,0.0001,0.0}. We use the Adam
optimizer to train VQT for 100 epochs, and the learning
rate follows the cosine schedule.

For training VPT with the ImageNet-21K and the MAE
backbones, we use each task’s best number of prompt to-
kens, which are released in VPT’s GitHub page®. Since
the VPT paper does not use the CLIP backbone, we sim-
ply set the number of tokens to 1 for all tasks in this case.
We conduct a hyper-parameter search to pick the best learn-
ing rate from {1.0,0.5,0.25,0.1,0.05} and the best weight
decay from {0.01,0.001,0.0001,0.0}. We train VPT using
the Adam optimizer for 100 epochs with the cosine learning
rate schedule.

Finally, when training AdaptFormer on all backbones,
we use the bottleneck dimension d = 64 and the scaling

8https://qithub.com/KMnP/vpt

Natural Specialized Structured

Accuracy (%)

. . » A
““

Fraction of intermediate features used for final predictions

Figure 8. Average accuracy on VTAB-1k using different fractions
of intermediate features for VQT.

factor s = 0.1 following [10]. We similarly search the best
learning rate from {1.0,0.5,0.25,0.1,0.05} and the best
weight decay from {0.01,0.001, 0.0001, 0.0} using the val-
idation set. The AdaptFormer is trained with the Adam op-
timizer for 100 epochs, and the learning rate decay follows
the cosine schedule.

C. Additional Experiments and Analyses
C.1. More Comparison with HEAD2TOE

In Table 1 of the main paper, we have compared VQT
with HEAD2TOE under the constraint of using a similar
number of tunable parameters, as mentioned in subsec-
tion B.3. To further evaluate the limit of VQT, we drop
this constraint and allow both VQT and HEAD2TOE to se-
lect the best feature dimensions based on accuracy. Specif-
ically, we pick the best feature fraction F' for VQT using
the validation set and compare it with the best HEAD2TOE
results, which are also obtained by selecting the best feature
dimension via hyper-parameter tuning, reported in their pa-
per [15]. Table 5 shows the results of HEAD2TOE and VQT
without the parameter constraint. VQT still significantly
outperforms HEAD2TOE on 15 out of 19 tasks across the
Natural, Specialized and Structured categories of VTAB-
1k, demonstrating the effectiveness of the summarized in-
termediate features in VQT. We also compare HEAD2TOE
and VQT on different pre-trained setups. As shown in Ta-
ble 6, VQT consistently outperforms HEAD2TOE on super-
vised, self-supervised (MAE) and image-language (CLIP)
pre-trained backbones. We used the best hyper-parameters
from the HEAD2TOE paper for the ImageNet-1K backbone,
and we only performed the learning rate and weight de-
cay hyper-parameters search for the MAE and CLIP model.
We match the number of tunable parameters in VQT and
HEAD2TOE for fair comparisons.

C.2. Robustness to Different Feature Fractions

We study the robustness of VQT using different fractions
of the intermediate features for prediction. Given a fraction
F, we follow the strategy mentioned in subsection B.2 to
select the best features. As shown in Figure 8, VQT is able
to maintain its accuracy, with less than 1% drop, even when

Natural Specialized Structured
, o - E z g
S = g | | g =] > = ! 3
E'. 2 2, | 5 = v ':‘:3 | g B2 - é g = <F = | =
% 35 5 z 5 o S - - 8§ =2 3 & =2 g =
£ £ g2 z gz £ T/ 5|E g ¢ £'5|5 5 £ E £ E S C.!§|¢
Method 5 8§ & 2 & & a.,2|& & & &, 2|0 © B & g% g % %,35 |3
| | |
HEAD2TOE | 582 873 645 859 854 829 351 : 713 | 812 95.0 799 74.1 : 82.6 | 493 584 416 644 533 329 335 394 : 46.6 | 63.3
VQT (Ours) | 58.5 89.5 66.7 89.9 888 79.7 351726 | 824 962 844 748 845|505 57.1 427 779 692 43.6 241 320 49.6 | 654

Table 5. HEAD2TOE and VQT’s test accuracies on the VTAB-1k benchmark with ViT-B/16 pre-trained on ImageNet-1K. In this compari-
son, we do not set parameter constraints and use the validation set to choose the best feature dimension based on accuracy. "Mean” denotes
the average accuracy for each category and ”Overall Mean” shows the average accuracy over 19 tasks.

Methods Natural Specialized Structured Mean
ImageNet-1K

H2T 68.9 82.9 46.3 62.3

vQT 72.7 84.5 49.3 65.3
MAE

H2T 55.6 80.3 444 55.7

vQT 66.0 82.9 53.5 63.9
CLIP

H2T 69.3 82.0 33.8 57.0

vQT 71.7 83.7 51.3 67.9

Table 6. Performance comparison between HEAD2TOE (H2T)
and VQT on various backbones.

Category = Natural Category = Specialized Category = Structured
80

85 50

Accuracy(%)
o o o 9 o~
a 3 & 3 &
>

o N N

& 3 & 3

N w w B B
w o w o 1%

Figure 9. Performance comparison between linear-probing, fine-
tuning and VQT on ViT-Base (86M parameters) and ViT-Large
(307M parameters) pretrained on ImageNet-21K

we discard 60% of the features. On the Structured category
in VTAB-1k, we can even drop up to 90% of the features
for VQT without largely degrading its performance. These
results reveal the potential of further compressing VQT to
reduce more parameters.

C.3. Different Vision Transformer Backbones

Figure 9 shows the performance comparison between
linear-probing, fine-tuning and VQT on ViT-Base (86M pa-
rameters) and ViT-Large (307M parameters) pretrained on
ImageNet-21K. Generally speaking, all methods perform
better on ViT-L than ViT-B due to higher model complexity.
In the Natural and Specialized category, VQT has similar
performance as fine-tuning on ViT-B and outperforms fine-

tuning on ViT-L. As explained in subsection 4.2, the Natural
and Specialized categories have stronger domain affinities
with the source domain (ImageNet). Thus, both pre-trained
backbones can generate more relevant intermediate features
for similar domains. In the Structured category, fine-tuning
slightly surpasses VQT on both backbones due to the dif-
ference between the pretrained dataset and the Structured
category.

C.4. Variants of VQT

We ablate different design choices on the ViT-B pre-
trained on ImageNet-21K and evaluate them on the VTAB
dataset.

Summarized feature aggregation within layers. VQT
relies on each layer’s summarized features (the outputs of
query tokens) for predictions. Although adding a suitable
number of tokens can improve the performance as shown in
Figure 6b, we investigate if we can effectively aggregate the
summarized features within a Transformer layer to reduce
the dimensionality by two approaches: (1) average pooling
and (2) weighted-sum, as shown in Figure 12a. Specifically,
(1) we perform pooling to average T output tokens back to /
token; (2) we learn a set of weights for each layer to perform
weighted-sum over T output tokens. After the aggregation
step, the size of the summarized features for each layer will
be changed from RP*7T to RP*1,

Figure 1la and Figure 11b show the aggregation per-
formance for T=10 and T=20 respectively. When we use
T=10, average pooling performs similarly to T=10 and out-
performs T=1 and weighted-sum. However, the trend is
reversed when we use T=20; weighted-sum surpasses av-
erage pooling and T=1. To strike a balance between per-
formance and efficiency, we suggest utilizing the validation
set to choose a good within-layer aggregation method for a
downstream dataset.

Summarized feature aggregation across layers. This
section explores how to aggregate the summarized features
(the outputs of query tokens) across layers. Instead of con-
catenation (Concat), the default method we use in the main

Accuracy(%)
o
o

ul
<)

ul
o

&"b&;\/ KZ $
&
Figure 10. Performance comparison for different across-layer ag-
gregation methods when T=1. The blue line shows the accuracy
for T=1 Concat. W-Sum is a more efficient and effective way to
aggregate summarized features across layers since it reduces the
dimensionality and performs better.

Accuracy(%)
Accuracy(%)

(@ (b)

Figure 11. Performance comparison for different within-layer ag-
gregation methods when T=10 and T=20, where “pool” and "W-
Sum” refers to average pooling and weighted sum, respectively.
The blue line shows the accuracy for T=1. Note that the summa-
rized feature dimension for T=10 (20) pool (w-Sum) is the same
as the one for T=1.

paper, we try feeding the summarized features from all lay-
ers to a randomly initialized Transformer layer with the
CLS token from the last Transformer layer and use the out-
put of the CLS token for prediction, dubbed Trans-Layer.
We also try to perform weighted-sum over all the summa-
rized features, dubbed W-Sum. When T=1, the dimension
for Concat is RP*M where M is the number of Trans-
former layers in the backbone and the dimension for Trans-
Layer and W-Sum is RP*!. The across-layer aggregation
methods are demonstrated in Figure 12b.

As shown in Figure 10, Trans-Layer is way behind Con-
cat. We hypothesize that the limited number of images per
task may not be sufficient to train a randomly initialized
Transformer layer. On the contrary, W-Sum outperforms the
default Concat, which is surprising for us since the same di-
mension of the summarized feature in different layers may
represent different information, and thus, the summarized

Methods Natural Specialized Structured = Mean
VPT 74.9 82.9 539 65.9
VPT+H2T 69.1 81.1 50.9 64.0
VPT+VQT 76.8 (6/7) 83.8(2/4) 53.4(6/8) 68.4
AF 734 80.1 473 63.8
AF+H2T 69.4 823 51.4 64.5
AF+VQT 77.0(7/7) 84.6(2/4) 53.4(6/8) 68.7

Table 7. Compatibility comparison between HEAD2TOE (H2T)
and VQT on VPT and AdaptFormer (AF). The (/) represents the
number of wins compared to baselines and baselines+H2T. The
results are based on ImageNet-1k pre-trained backbone.

feature from different layers may not be addable. However,
based on this result, we hypothesize that the skip connec-
tion in each layer can be the cause of the addibility of sum-
marized features from different layers. We believe study-
ing more effective and efficient aggregation methods for the
summarized features is an interesting future direction.

C.5. t-SNE Visualization for More Datasets

We present t-SNE visualizations of the CLS token and
our summarized features for more tasks in Figure 13. Sim-
ilar to Figure 5, adding summarized features makes the
whole features more separable than the CLS token alone,
demonstrating the benefit of using intermediate features and
the advantage of our query tokens in summarizing them.

C.6. Results for All Tasks on Different Backbones

Table 8 shows the per-task accuracies for 19 tasks in
VTAB on different ViT-B backbones, including CLIP, MAE
and Supervised ImageNet-21K.

C.7. Compatibility comparison between VQT and
H2T

We compare the compatibility performance between
HEAD2TOE and VQT with VPT and AdaptFormer (AF).
For a fair comparison, we ensure that the output fea-
ture dimension is the same as the original one (D=768
in ViT) when we combine VPT and AdaptFormer with
HEAD2TOE and VQT. We use the default feature selec-
tion method in the original paper for HEAD2TOE and the
weighted-sum approach (see subsection C.4 for details) for
VQT. Table 7 shows the results on ImageNet-1k pre-trained
backbone and VQT demonstrates more competitive com-
patibility performance than HEAD2TOE.

D. Additional Discussions
D.1. More Discussions on Memory Usage

As mentioned in the last paragraph of subsection 3.3 and
as shown in subsection 4.4, since VQT keeps all the inter-
mediate features intact and only learns to tune the query

Average Pooling OR _’ﬁ

Weighted Sum

Weighted Sum

Average Pooling OR
>

900 - 00 B0

(a)

Head

¢

Concatenation OR
Transformer Layer OR
Weighted Sum

00 -

Figure 12. (a) shows the within-layer aggregate methods. Multiple output query tokens within the same layer can be aggregated through
average pooling or weighted sum. (b) shows the across-layer aggregation methods. Output query tokens from different layers can be
aggregated through concatenation, weighted sum or another randomly initialized Transformer layer.

SmalINO|

DMLab.

KITTI-Structured

CLs

CLS + Summarized features

CLS

CLS + Summarized features

CLEV Patch Camelyon-Structured

(b)

Figure 13. t-SNE visualization of the CLS tokens alone (top) and CLS tokens plus our summarized features (bottom) on more tasks
from VTAB. Adding the summarized intermediate features makes the whole features more separable. We include tasks that have less or

equal to 10 classes for visualization.

tokens and the prediction head, the training process by-
passes the expensive back-propagation steps and does not
require storing any intermediate gradient results, making it
very memory-efficient. As shown in Figure l1a, VPT needs
to run back-propagation (red arrow lines) through the huge
backbone in order to update the inserted prompts. On the
contrary, VQT only needs gradients for the query tokens
because all intermediate output features are unchanged, as
shown in Figure 1b.

D.2. Cost of VQT and AdaptFormer

In subsection 4.3, to confirm that the improvement men-
tioned above does not simply come from the increase of tun-
able parameters, we enlarge AdaptFormer’s added modules
by increasing the bottleneck dimension d from 64 to 128
and 256 to match the tunable parameter number of Adapt-
Former when equipped with VQT. Here, we show the de-
tailed parameter calculation in Figure 2. The additional
parameters for AdaptFormer and VQT can be calculated

Natural Specialized Structured
' g > ! =
=1 —] ! > = - ‘] oo S
=] S S ! g = w“ 5 ! 2 Z A %) - < 0o =
2 % ¢ z 5 > 3 % & ¢ & g =z § 58 2 g8, 3
z £ g ¢ 4 E 2.5|% % ¢ £.5|: : s Er L § &15|¢
Method 5§ 8§ &8 & & & &'2|8 &4 & &'2|0 © & ¥ % % % %238
' CLIP backbone '
AdaptFormer 737 932 752 96.8 90.7 927 56.1 . 82.6 | 833 957 878 73.6 . 85.1 1765 619 49.6 84.1 846 554 295 457 . 60.9 | 74.0
AdaptFormer+VQT | 71.3 953 77.1 962 90.6 933 512821 | 84.8 964 887 734 858|758 626 524 838 918 546 33.6 465 62.6 | 747
VPT 663 90.1 737 947 903 91.6 56.0 : 80.4 | 833 934 873 756 : 849 | 415 575 523 80.7 651 543 277 284 : 50.9 | 68.9
VPT+VQT 70.8 95.1 727 93.8 898 935 548 1 815|852 957 897 748 863|525 626 553 841 77.1 564 346 351 572|723
' MAE backbone ' '
AdaptFormer 53,5 90.1 603 833 8l4 830 296 . 68.7 | 83.0 939 744 738 . 81.3 | 778 60.3 440 795 759 53.1 303 456 . 58.3 | 67.0
AdaptFormer+VQT | 56.8 90.4 63.7 86.8 80.7 89.7 29.7,71.1 | 845 954 809 725,833 |659 585 465 84.0 822 532 321 51.1,592 | 68.6
VPT 455 889 622 751 732 752 244 '635|80.1 946 683 73.6 : 79.1 | 69.5 582 394 70.8 53.6 512 204 255 : 48.6 | 60.5
VPT+VQT 489 903 652 874 818 759 2601679 | 814 951 80.8 73.6 827|633 592 444 802 465 527 228 284 1497|634
Supervised ImageNet-21K backbone '
AdaptFormer 799 89.8 685 98.0 883 814 548 | 80.1 | 80.3 954 81.1 723 | 823 | 71.0 550 423 688 659 451 249 298 | 50.3 | 68.0
AdaptFormer+VQT | 77.1 93.7 682 982 898 84.1 459, 79.6 | 82.1 962 856 732843 |714 549 445 723 767 452 276 3131 53.0| 694
VPT 798 899 67.5 98.0 87.0 794 523! 79.1| 835 960 83.7 752 : 84.6 | 68.1 60.1 43.0 748 744 444 300 40.2 : 544 | 69.9
VPT+VQT 76.8 926 692 983 878 81.6 462 789 | 81.3 963 847 724 837|596 603 430 776 793 46.0 312 395 546 | 69.7

Table 8. Test accuracies for AdaptFormer,

VPT and their combinations with VQT on the VTAB-1k benchmark on ViT-B/16 pre-trained

with CLIP, MAE and Supervised ImageNet-21K. "Mean” denotes the average accuracy for each category and ”Overall Mean” shows the

average accuracy over 19 tasks.

asdx2xDxMandT xDx M+T x D x M x C,

query tokens

prediction head

respectively where d denotes the bottleneck dimension of
AdaptFormer; D is the embedding dimension; M is the
number of Transformer layer; T represents the number of
VQT’s query tokens; C denotes the average number of
classes in VTAB, and we round it to 50 for simplicity. The
numbers of tunable parameters and percentages of tunable
parameters over ViT-B’s number of parameters (86M) for
AdaptFormer and AdaptFormer+VQT are shown in Table 9.

D.3. Training Efficiency

In this subsection, we point out another potential advan-
tage of VQT besides its parameter and memory efficiency
— training efficiency (i.e., the number of floating-point op-
erations and the overall wall-clock time in training). This
can be seen from two aspects.

On the one hand, since VQT does not change the original
intermediate features obtained from the pre-trained back-
bone but only learns to combine them, we can pre-compute
them for all the downstream data and store them in the
hard drive or even random access memory (RAM)’ for later
training (epochs). As mentioned in subsection B.4, we per-
form 100 epochs for learning the query tokens in VQT, in
which we indeed only need to compute the intermediate fea-
tures once in the first epoch, and reuse them in later epochs.
Given a standard ViT-B with 12 Transformer layers and 197
embedding tokens of size 768 for each layer, all the interme-
diate features for an image amount to “12 x 197 x 768 32-
bit floats (7MB); storing them for a task in VTAB with 1K
images only requires 7GB in the hard drive or RAM. With

9We note that these are not the same memory as in memory efficiency.
The latter refers to the GPU or CPU memory.

all the pre-computed intermediate features, we can paral-
lelize the forward and backward passes of the 12 layers at
the same time, potentially making the training process 12 x
faster.

On the other hand, since VQT only uses the outputs of
the newly introduced query tokens for predictions, during
the forward pass within each layer, we just need to pass the
MSA features corresponding to these tokens to the MLP
block, making it additionally faster on top of the cross-layer
parallelization mentioned above.

AdaptFormer d=64 d=128 d = 256

Tunable parameters # | 1179648 2359296 4718592
Tunable parameters % 1.37% 2.74% 5.49%
AdaptFormer+VQT d=64& d=64&T=2 d=64&T =14
Tunable parameters # | 1179648 2119680 3059712
Tunable parameters % 1.37% 2.46% 3.56%

Table 9. Numbers of tunable parameters and percentages of tunable parameters over ViT-B’s number of parameters (86M) for AdaptFormer
with different bottleneck dimensions and AdaptFormer+VQT with different numbers of query tokens.

