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(a) Architecture for object detection / segmentation on MS-COCO
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(b) Architecture for semantic segmentation on ADE20K

Figure 1. the augmentation performed on the MAE pretrained en-
coder architecture for downstream fine-tuning

A. Implementation Details
A.1. Pre-training

The encoder model architecture follows closely that of
the MAE paper [1]. The full configuration of the model and
pre-training settings are shown in Table 1. For the ViT-B
encoder, the width is set to 768 dimensions and comprises
12 layers each with 12 self-attention heads. For the ViT-
L encoder, the width is 1024 dimensions and comprises
24 layers each with 16 self-attention heads. The decoder
comprises in both cases 8 layers each with 16 self-attention
heads and a width of 512 dimensions.

A.2. Fine-tuning

The full configuration of the model and fine-tuning set-
tings are shown in Table 2. For MS-COCO, we use a Mask-
RCNN backbone as shown in Figure la. This uses Fea-
ture Pyramid Networks (FPNs) [2] and we adapt the ViT
encoder model accordingly. Specifically, as the encoder
is composed of multiple ViT transformer layers outputting
feature maps at a single scale (unlike convolutional layers),
we extract feature maps at 4 layer intervals i.e. [0,4,8,12].
Feature maps are resampled to the respective size required
by the original Mask-RCNN head. For upsampling, bi-
linear interpolation is used with a scale factor of two (if
required) followed by a 3x3 convolution. For downsam-
pling, the features are reshaped to a square matrix followed
by a 3x3 convolution. For segmentation on ADE20K [&],
we adopt the UperNet model [5] as our decoder. This fol-
lows a similar strategy as Mask-RCNN, necessitating a FPN
backbone and the same processing steps described above
are applied, as illustrated in Figure 1b

B. Additional Reconstruction Results

Figure 2 shows additional randomly sampled reconstruc-
tion results from the ImageNet 1K validation set. Of note is
how as additional perceptual supervision is increased, high-
frequency detail such as fur in samples 1 and 3 are recon-
structed more faithfully. More interestingly, in sample 2 the
eyes are reconstructed properly despite being masked out
entirely in the input to the decoder. This suggests that the
model learns to capture higher-level semantic information
better than when using plain vanilla MSE.



Table 1. Hyperparameters used for pre-training MAE and MSG-
MAE on ImageNet 1K data.

Hyperparameter ViT-B ViT-L
Image patch size 16x16
Hidden size 768 1024
No. of layers 12 24
Attention heads 12 16
FFN hidden size 3072 4096
Decoder hidden size 512
Decoder No. of layers 8
Decoder attention heads 16
Training epochs 300 1200
Batch size 32
Optimizer Weighted Adam [3]
learning rate 1.5e-4
Weight decay 0.05
Adam (0.9, 0.999)
Learning rate schedule Cosine
Warmup epochs 40

Data augmentations RandomResizedCrop
Input resolution 224x224
Colour jitter 0.4
Masking ratio 75%

Table 2. Hyperparameters for linear probing and fine-tuning pre-
trained MAE and MSG-MAE on downstream datasets.

Hyperparameter Value
Training epochs 130
Batch size 32
Optimizer Weighted Adam [3]
learning rate 0.001
Weight decay 0.05
Adam (0.9, 0.999)
Learning rate schedule Cosine
label smoothing € [4] 0.1
mixup [7] 0.8
cutmix [6] 1.0
Warmup epochs 10

Data augmentations

RandAug(9, 0.5)
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Figure 2. Randomly sampled reconstructions from the ImageNet-1K validation set. Columns are: (A) the original ground truth, (B) the
masked input (MIR 75%), (C-G) are the reconstructed outputs generated MAE model trained with: MSE [1], SSIM+L1, LS-GAN-P,

MSG-GAN-P, StyleGANV2-ADA-P losses respectively.
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