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A. Tracking
We can compute mask and keypoint-level correspon-

dences across frames after detecting instances (Sec. 4.2) by
using Best-Buddies similarity [13] on features � within or
between instances. As a 3D representation, SUDS can track
correspondences through 2D occluders. We show an exam-
ple in Fig. 7.

B. Proposal Sampling
We use a proposal sampling strategy similar to Mip-

NeRF 360 [7] that first queries a lightweight occupancy pro-
posal network at uniform intervals along each camera ray
and then picks additional samples based on the initial sam-
ples. We model our proposal network with separate hash
table-backed static and dynamic branches as in Sec. 3.2. We
train each branch of the proposal network with histogram
loss [7] using the weights of the respective branch of our
main model and regularize the resulting sample distances
and weights using distortion loss [7]. We find that proposal
sampling gives a 2-4x speedup.

C. Smoothness Priors
We use the same spatial and temporal smoothness priors

as NSFF [29] to regularize our scene flow. We specifically
denote:
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where x and x0 indicate neighboring points along the camera
ray r.

D. Ablation Details
w/o Depth loss. We remove depth from the reconstruc-

tion loss term:

Lrec = Lc + �fLf + �oLo (30)

w/o Optical flow loss. We remove optical flow from the
reconstruction loss term:

Lrec = Lc + �fLf + �dLd (31)

w/o Warping loss. We remove all warping and flow-
related loss terms:
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w/o Appearance embedding. We compute static color
without the latent embedding vector AvidF(t):

cs(x, d) 2 R3 (33)

w/o Occlusion weights. We do not use occlusion
weights (24) to downweight the warping loss terms (25, 26):
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w/o Separate branches. We generate all model outputs
using a single time-dependent branch:

�(x, t, vid) 2 R (36)

c(x, t, vid, d) 2 R3 (37)

�(x, t, vid) 2 RC (38)

st02[�1,1](x, t, vid) 2 R3 (39)

We accordingly remove factorization-related loss terms:
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E. Additional Training Details
We divide City-1M into 48 cells using camera-based k-

means clustering. Each cell covers 2.9 km
2 and 32k frames

across 98 videos on average. We evaluate the effect of geo-
graphic coverage and number of frames/videos on cell qual-
ity in Table 5. We train with 1 A100 (40 GB) GPU per cell
for 2 days (same for each KITTI scene). We can fit all cells
on a single A100 at inference time.

F. Assets
City-1M. Our dataset is constructed from street-level

videos collected across a vehicle fleet with seven ring cam-
eras that collect 2048x1550 resolution images at 20 Hz with
a combined 360° field of view. Both VLP-32C LiDAR sen-
sors are synchronized with the cameras and produce point
clouds with 100,000 points at 10 Hz on average. We lo-
calize camera poses using a combination of GPS-based and
sensor-based methods.



Figure 7. Tracking. We track keypoints (above) and instance masks (below) across several frames. As a 3D representation, SUDS can
track correspondences through 2D occluders.

 15k 15-30k 30-45k � 45k

"PSNR 22.86 21.99 21.35 20.75
"SSIM 0.583 0.569 0.557 0.538
#LPIPS 0.516 0.545 0.564 0.578

Images

 60 60-90 90-120 � 120

"PSNR 22.47 21.72 21.68 21.11
"SSIM 0.587 0.556 0.559 0.555
#LPIPS 0.526 0.557 0.557 0.565

Videos

 2 km2 2-3 km2 3-4 km2 � 4 km2

"PSNR 22.73 21.47 21.53 22.18
"SSIM 0.609 0.556 0.561 0.557
#LPIPS 0.512 0.564 0.555 0.536

Area

Table 5. City-1M scaling. We evaluate the effect of geographic coverage and the number of images and videos on cell quality. Although
performance degrades sublinearly across all metrics, image and video counts have the largest impact.

Third-party assets. We primarily base the SUDS imple-
mentation on Nerfstudio [48] and tiny-cuda-nn [34] along
with various utilities from OpenCV [8], Scikit [9], and Amir
et al’s feature extractor implementation [5], all of which
are freely available for noncommercial use. KITTI [21]
is similarly available under an Apache license, whereas
VKITTI2 [18] uses the noncommercial CC BY-NC-SA 3.0
license.

G. Limitations
Video boundaries. Although our global representa-

tion of static geometry is consistent across all videos used
for reconstruction, all dynamic objects are video-specific.
Put otherwise, our method does not allow us to extrapo-
late the movement of objects outside of the boundaries of
videos from which they were captured, nor does it provide a
straightforward way of rendering dynamic visuals at bound-
aries where camera rays intersect regions with training data
originating from disjoint video sequences.

Camera accuracy. Accurate camera extrinsics and in-
trinsics are arguably the largest contributors to high NeRF
rendering quality. Although multiple efforts [12, 23, 30, 32,
55] attempt to jointly optimize camera parameters during

NeRF optimization, we found the results lacking relative to
using offline structure-from-motion based approaches as a
preprocessing step.

Flow quality. Although our method tolerates some de-
gree of noisiness in the supervisory optical flow input, high-
quality flow still has a measurable impact on model per-
formance (and completely incorrect supervision degrades
quality). We also assume that flow is linear between ob-
served timestamps to simplify our scene flow representa-
tion.

Resources. Modeling city scale requires a large amount
of dataset preprocessing, including, but not limited to:
extracting DINO features, computing optical flow, deriv-
ing normalized coordinate bounds, and storing randomized
batches of training data to disk. Collectively, our intermedi-
ate representation required more than 20TB of storage even
after compression.

Shadows. SUDS attempts to disentangle shadows un-
derneath transient objects. However, if a shadow is present
in all observations for a given location (eg: a parking spot
that is always occupied, even by different cars), SUDS may
attribute the darkness to the static topology, as evidenced
in several of our videos, even if the origin of the shadow is



correctly assigned to the dynamic branch.
Instance-level tasks. Although we provide initial qual-

itative results on instance-level tasks as a first step towards
true 3D segmentation backed by neural radiance field,
SUDSis not competitive with conventional approaches.

H. Societal Impact
As SUDS attempts to model dynamic urban scenes with

pedestrians and vehicles, our approach carries surveillance
and privacy concerns related to the intentional or inadver-
tent capture or privacy-sensitive information such as human
faces and vehicle license plate numbers. As we distill se-
mantic knowledge into SUDS, we are able to (imperfectly)
filter out either entire categories (people) or components
(faces) at render time. However this information would still
reside in the model itself. This could in turn be mitigated
by preprocessing the input data used to train the model.


	. Introduction
	. Related Work
	. Approach
	. Inputs
	. Representation
	. Optimization

	. Experiments
	. Experimental Setup
	. City-Scale Reconstruction
	. KITTI Benchmarks
	. Diagnostics

	. Conclusion
	. Tracking
	. Proposal Sampling
	. Smoothness Priors
	. Ablation Details
	. Additional Training Details
	. Assets
	. Limitations
	. Societal Impact

