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1. Dataset details

Table 1 provides the annotation number for each class of

the MuCeD dataset.

Table 1. Annotation numbers

S.No Tissue Name Annotated

1 Intra-Epithelial Lymphocyte 2090

2 Epithelial Nuclei 6518

Fig 1 provides the details of how whole slide image

(WSI) is sliced to get the image sub-slices. Here, it is im-

portant to note that we mask out region apart from the anno-

tated epithelial area. Epithelial area is shown in fig 1 as bold

boundary of the villi. We select good villi based on conti-

nuity of epithelial layer for our analysis. Further, image is

sliced into 9 sub-images, where each dimension is 640 ×

640.

Figure 1. Fig shows sample image of celiac dataset. Each WSI

image is sliced into 9 parts and further rescaled to improve the

magnification of cells. IELs are marked in violet bounding boxes.

and Epithelial nuclei are marked in cyan bounding boxes

*Equal contribution

2. Training Object detection model

We tested DeGPR on multiple object detection models

to verify if it is object agnostic. Yolov5 is from the class

of single stage object detectors. Yolo slices the images into

multiple grids and corresponding to each grid, it predicts the

bounding boxes with confidence score and class probability

map. Faster-RCNN introduced a region proposal network

(RPN) to make computation of region proposals cost effec-

tive. RPN can be trained end-to-end to generate high qual-

ity proposals. EfficientDet introduced Bi-directional feature

pyramid network (BiFPN) and compound scaling to uni-

formly scale depth, width and resolution.

For experimentation, we use official implementation of

Yolov5 * and Faster-RCNN using are in pytorch. We use

pytorch implementation of EfficientDet * with pre-trained

model efficientdet d0.

We believe that EfficientDet has more parameters and eas-

ily overfits on small datasets, hence the performance of

EfficientDet is comparitively lower than Yolo and Faster-

RCNN. We pre-trained model with Kaggle cell segmenta-

tion dataset. However, with CoNSeP and MoNuSac, we

did not see improvements with pre-training, since they both

have much more training data than MuCeD. DeGPR cre-

ates a computation overhead for training GMM G(θ) for

mini-batch. This results in increased training time upto 1.5

hour in addition to baseline training time. Yolov5 takes 3-

4 hour to complete the training process depending on early

stop. Faster-RCNN takes 6-7 hours with DeGPR and Ef-

ficientDet takes 8-10 hours to complete the training pro-

cess. All experiments were preformed on NVIDIA-RTX

5000. We found p values of 0.008 and 0.007 for Precision

and mAP with MuCeD using student’s paired t-test. While

performing ablation study, we did experiments with only

size (mAP 020 0.773) and only intensity (mAP 0.770), and

observed that combined size and intensity performs better

(mAP 0.779).

*https://github.com/ultralytics/yolov5
*https://github.com/rwightman/efficientdet-pytorch
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Table 2. Ablation for EncoderEφ

Model Acc Precision Recall F1

ResNet18 0.867 0.938 0.740 0.827

ResNet34 0.8564 0.931 0.6455 0.762

ResNet50 0.8604 0.946 0.661 0.778

ResNet101 0.859 0.929 0.73 0.817

3. Training Contrastive encoder

Fig 2 provide the t-SNE plot of the trained Encoder

for one of the fold of the MuCeD dataset. As we know

encoder E(θ) is trained with supervised constrastive loss

(LSupCon). Contrastive encoding enforces similar data

points to be close. We can see from the fig 2, IEL’s (red)

and EN (blue) are represented by separate clusters. Hence,

encoder E(θ) is able to learn the discriminative features be-

tween the cell types.

Figure 2. t-SNE plot of embeddings learnt for IEL’s (red) and

EN (blue). We can see from the embeddings that two clusters are

formed which meant that model is able to map similar embeddings

close to each other.

Tab 2 provide comparative analysis for different encoder

backbones like ResNet 18, 34, 50, 101. We observed that

larger models does not provide any additional performance

gain hence we used ResNet18 for our experimentation pur-

pose.

4. Counting via detection

Table 3 compares counting via detection with density

map based methods for MoNuSAC dataset. We observe

from tab 3 Yolov5 with DEGPR is performing well for most

of the cell types.

Figure 3. Implicit and explicit features

Table 3. Counting vs Localization (MoNuSAC)

Model MAE

Epith

MAE

Lympho

MAE

Neutro

MAE

Macro

MAE

Avg

UNet 57.64 33.91 1.31 2.55 23.85

FCRN-A 64.48 60.71 0.17 1.52 31.72

SAU-Net 60.42 54.42 1.49 2.72 29.76

Yolov5

(DeGPR)

12.01 10.69 0.81 2.32 6.46

For the density map based methods, we trained separate

models for each class type. We can see that Yolov5 with

DeGPR has the best performance.

5. Visualization

Fig 5, 6 and 7 provide the qualitative analysis of the

model performance on MuCeD, CoNSeP and MoNuSAC

respectively. The first column shows the raw images, the

second column shows the images with ground truth bound-

ing boxes, the third column shows the performance of the

baseline Yolov5 model while the final column shows the

performance of the Yolov5 model with DEGPR. We can

see that DEGPR helps in solving problems like extra detec-

tions, missed detections and misclassifications.

Fig 3 is a t-SNE plot for implicit vs explicit features. We

can see from the fig 3 implicit and explict features do not

overlap completely and are actually capture complementary

information.

6. Convergence of losses

Fig 4 provide loss convergence for detection loss (Ldet),

classification loss (Lcls) and DeGPR (Lreg). We can ob-

serve from the fig 4 that all loss converge over the epochs.

7. SOTA comparision

We compared our method with MCSpatNet. MCSpat-

Net is a dot-annotation method, so we were only able to

add DEGPR with intensity feature. On ConSeP, stomal

cell predictions gained 7.7 F1 points, due to intensity dif-

ferences captures by DEGPR Tab 5. Because MCSpatNet

uses spatial information to cluster cells, it fails to perform

well on MuCeD (0.549 mean F1, compared 078 to 0.742



Figure 4. Convergence of losses.

Table 4. F score of individual classes for MuCeD dataset

Model IEL Epith

MCSpatNet 0.545 0.554

DEGPR 0.725 0.759

Table 5. F score of individual classes for CoNSeP dataset

Model Infl. Epi. Sto.

MCSpatNet 0.724 0.695 0.682

DEGPR 0.731 0.632 0.538

MCSpatNet(DEGPR) 0.736 0.698 0.759

Table 6. Comparative analysis with HoverNet for CoNSeP

Model Dice AJI DQ SQ PQ

HoverNet 0.853 0.531 0.702 0.778 0.547

Reprod. 0.838 0.534 0.652 0.764 0.499

DEGPR 0.838 0.533 0.655 0.764 0.502

for Yolo+DEGPR), because here, IELs and ENs are in-

terspersed across the region as shown in Tab 4. Another

method HoverNet uses segmentation based annotation. We

experimented with CoNSeP Tab 6, and found that DEGPR

yields negligible improvements (but doesn’t hurt perfor-

mance), probably because vital information of shape is al-

ready captured by the base model.



Original Ground Truth Baseline Proposed

Figure 5. Qualitative performance of DEGPR for MuCeD. The cells are marked as Blue (EN) and Red(IEL). In the first row, in the

region A1, we can see that the baseline model misses multiple Epithelial Nuclei which are overlapping. The model with DEGPR performs

better here. In region A2, the baseline model misclassifies an IEL as an EN. In the second row, the regions B1, B2, B3 show reduction in

misclassfication errors as well as cells which were missed. In the third row, in region C1, the baseline model makes extra predictions which

the model with DEGPR has solved. In region C2, there is an IEL which is inside an EN(in 3-d, it is on top of the EN). The model with

DEGPR is successfully able to detect the IEL. Finally, the fourth row has cells of very light intensity. While the baseline model makes

misclassifications, the model with DEGPR is successful in detecting all cells correctly.



Original Ground Truth Baseline Proposed

Figure 6. Qualitative performance of DEGPR for CoNSeP. The cells are marked as Blue (Inflammatory), Red (Epithelial) and Green

(Spindle). We can see that the baseline model often misclassifies spindle cells as inflammatory cells. This is probably because of their

high structural similarity. The model with DEGPR is successfully able to capture the differences between spindle and inflammatory cells.

However, it is still not perfect as can be seen in row 4 where there are multiple misclassifications of spindle cells as epithelial cells. We

believe one of the main reasons this happened is because of the high density of cells in the image and which dampens the effect of DEGPR

since it considers the average feature difference between two classes



Original Ground Truth Baseline Proposed

Figure 7. Qualitative performance of DEGPR for MoNuSAC. The cells are marked as Blue (Epithelial), Red (Lymphocyte), Green

(Neutrophil) and Cyan (Macrophage). The baseline model often makes extra predictions for the macrophage class as is evident from the

first three rows. The model with DEGPR is able to successfully solve this issue. In row 3, we can also see how the model with DEGPR is

able to detect the large macrophage which was missed by the baseline model. This is a perfect example where size as an explicit feature

is helping the model. In row 2 and row 4, the baseline model misclassifies lymphocytes as epithelial or neutrophil cells. The model with

DEGPR is successfully able to solve this issue. At the same time, there are some errors like extra predictions in rows 1 and 3. These extra

predictions probably arise since the detected cells are structurally similar to our required cells.
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