
Supplementary Material: Learning to Predict Situation Hyper-Graphs for Video
Question Answering

In this supplementary document, we discuss the following:

1. Additional architectural details (A)

2. Implementation and training details (B)

3. Additional experimental details (C)

4. Additional results and analyses (D)

5. Qualitative results (E)

6. Computational cost of SHG-VQA (F)

7. Ethical Considerations (G)

A. Additional Architectural Details
In this section, we provide the additional architectural

details as follows:

A.1. Input processing

The SHG-VQA can be trained in both open-ended as
well as multiple choices settings. For multiple choice setup,
C answer choices are also given as input with the question.
The goal hence becomes a C-way classification task.

A.2. Question Encoder:

We encode the question (and answer choices) as follows:
first, a learnable embedding layer is used to initialize each
word token with an embedding vector. These word embed-
dings along with the special token [CLS] are input to the
text transformer encoder encoding each word using multi-
head self-attention between different words at each encoder
layer. In the multiple choices setup, we append the answer
choices to the question words as follows:

QA = [CLS] +Q+ [SEP ] +A0 + [SEP ] +A1

+...+ [SEP ] +AC

(1)

where, QA is the sequence composed of question words
and answer choices separated by a special token [SEP ];
[CLS] is a special token appended at index 0 to aggre-
gate question and answer choices into a sentence vector;
C denotes the number of answer choices. We empirically
find that composing the question and answer choices in the
above format gives better performance.

Figure 1. Performance comparison with the baselines w.r.t. train-
ing data samples on AGQA dataset. SHG-VQA outperforms the
baselines even when trained with only 100K samples.

A.3. Action Decoder

Given the video clip features, we want to decode the set
of actions A in each frame. To decode the set of actions
At at each timestep t, a sequence of learnable embeddings
of size d referred to as action queries of length |N | × T is
input to the action decoder. The action decoder comprises
the standard transformer decoder architecture and stacks L
decoder layers. In addition, the action decoder also takes
encoded video tokens as memory and a target mask (of size
R(|N |×T )×(|N |×T )). The target mask is created to perform
parallel decoding predicting all actions in a frame at once
based on the decoded actions in previous frames. The target
mask prevents attending to the action queries from future
frames (by setting values to −∞) which masks them out [7].
Our approach deviates from using traditional approach [7]
or the parallel decoding approach [1] by using a masking
at frame-level e.g., to decode actions for frame 0, we set
next |N | × (T − 1) positions to −∞ and so on. The action
decoder outputs the decoded sequence of action features for
each time step t.



Figure 2. Prediction Head: Each decoded query is passed through
a FFN to predict one of the classes or a “no-class” label.

A.4. Relationship Decoder

Like the action decoder, we employ a relationship de-
coder to decode the set of relations Rt in each frame. We
input a sequence of |M | × T learnable relation embeddings
of size d called relation queries and encoded video tokens
xVe

as input to the relationship decoder. The relationship
decoder has the same architecture as action decoder with
variable weights. The relation decoder also takes a target
mask (of size R(|M |×T )×(|M |×T )) and perform parallel de-
coding to predict all relations in a frame at once. The rela-
tionships decoder outputs the decoded sequence of relation
features for the full video.

A.5. Prediction Heads:

Prediction heads take the decoded queries as input and
classify them as an action/relationship from the actual
classes or the ”no-class” (denoted by ϕ). Therefore, for each
prediction head, the total number of classes are #classes+
1. See fig. 2 for illustration of prediction head.

B. Additional Implementation Details
B.1. Training details

SHG-VQA is trained with learning rate lr = 1e − 5,
BERT [2] optimizer, and batch size upto 128 for each train-
ing depending on the maximum samples which could fit to

Figure 3. Overview of the bi-partite matching in SHG-VQA. Opti-
mal bipartite matching ( Lmatch(.)) is performed between the set
of predicted classes for all decoded queries (of actions/relationship
predicates) and the ground truth labels using the Hungarian algo-
rithm. Per frame optimal matching is carried ∀t ∈ {1, ..., T}.
Then, a loss is computed between the matched pairs of ground
truth labels and predicted classes using a cross-entropy loss func-
tion. See section 3.4 (main paper) for details.

the GPUs. The best reported results for both datasets use
M=8 relations and N=3 actions.

B.2. Hypergraph token handling at test time:

During the training of the situation hyper-graph embed-
ding, we use attention mask for masking padded tokens.
However, these masks are not available at inference time
because we assume that we are only provided the video and
question with answer choices at test time. Thus, we set at-
tention mask to all 1’s at inference time. Moreover, the pre-
diction is made to the original video clip with out any data
augmentation.

B.3. Data Augmentations

While we obtain a good increase in performance over exist-
ing methods for interaction and sequence questions, SHG-
VQA performed on par with the baselines for prediction and
feasibility. We attribute this to the less training data avail-
able for prediction and feasibility. The number of questions
for each question type in training set are: interaction:∼16K
, sequence: ∼22K, prediction: ∼4K, feasibility: ∼3K. To
address this matter, we add training samples from other
question types. We filter out the videos from interaction
and sequence question types which have the same video ID
as prediction and feasibility. This avoids the data leakage
problem of peeping into future frames during training. The
remaining set of QA pairs are added to the training set for
prediction and feasibility resulting in ∼15K training sam-
ples for feasibility and ∼16K samples for prediction ques-
tion type. We observe the expected performance gain when
the model is provided proportional amount of data.

C. Additional Experiment Details
C.1. Details about AGQA baselines

For AGQA, we consider three video QA methods as our
baselines: PSAC [6], HME [3], and HCRN [5]. PSAC uses



Figure 4. Correlation between accuracy and compositional steps for binary answers, open answers, and overall. To do so, a linear regression
model is fit for each model’s performance. Our model is superior in performance than the baselines bridging the accuracy gap narrower
with the human performance. The shaded area indicates 80% confidence interval.

ResNet-152 to extract video features; HME uses ResNet
or VGG for appearance features and use C3D for motion
features extraction; HCRN uses ResNet101 for appearance
features and ResNext101 pretrained on Kinetics-400 to ex-
tract motion features. We use SlowR50 as our backbone
model.

C.2. Training Details for STAR Dataset

Data preprocessing for ablation studies: Baselines on
STAR dataset train a separate model for each question type.
Because training separate models for each question time is
not feasible in terms of time and computational resources,
we merged the data from all question types for our ab-
lations. To do so, we carefully removed the videos and
the corresponding QA pairs from interaction and sequence
question types which appear in prediction and feasibility
questions. As prediction and feasibility questions are about
the future frames not available at inference time, keeping
these questions for other question types could give an ad-
vantage to the model of looking at the full video even if it
happens for solving a different question. Filtering out those
QA pairs before merging all questions makes it a fair train-
ing for prediction and feasibility questions. However, these
questions comprises a large chunk for interaction and se-
quence. As expected, this declines the VQA performance
for interaction and sequence questions upto 2%-8%. How-
ever, we notice a gain over prediction and feasibility ques-
tions just by showing more examples to the model even
if they are not for the same question types. More specifi-
cally, on test set, we notice prediction accuracy of 37.29%
(merged data) vs. 35.34%(separate) and feasibility accu-
racy of 33.04% (merged data) vs. 32.52%(separate). We
also experimented with using questions from all question
types without any filtering and obtained the overall vali-
dation accuracy of 48.25%. In Table 8, we provide fur-
ther details about the experiments including batch sizes for
each model, backbone, and loss function. All models were
trained up to 100 epochs using early stopping based on the

validation accuracy. If not stated otherwise, all ablations
are performed with a single model (batch size=32) trained
on all questions together with filtering out the QA pairs with
overlapped video IDs between {interaction, sequence} and
{feasibility, prediction}.
Different batch size per question type/model: As each
question type is trained on a separate model with differ-
ent constrains such as amount of data, but constant hard-
ware requirements, we first evaluate different batch sizes for
training each model depending on the maximum number of
samples could be used for training. Column 3-Batch Size in
Table 8 shows a tuple with batch sizes for feasibility, pre-
diction, sequence, and interaction respectively. For train-
ing a separate model on each question type, we used batch
size=16 with Slow R50. For ResNext101, we used batch
sizes (16, 16, 4, 4) for (feasibility, prediction, sequence, in-
teraction). In our experiments, we observe no significant
difference in VQA accuracy when training the models with
different batch sizes. Nonetheless, our best results are re-
ported using batch sizes of (16, 16, 16, 16) with Slow R50
backbone, and batch sizes (16, 16, 4, 4) for ResNext101.

D. Additional results and analyses
Here, we discuss further results and analyses on AGQA

and STAR benchmarks.

D.1. AGQA

D.1.1 Performance comparison w.r.t. training data

To train on AGQA, we split the AGQA training set into
90%-10% train-val split. The new training set after this
split comprises approximately 1.4M QA pairs. From this
training set, we randomly sampled 100K data samples to
train our network. We find the SHG-VQA to outperform
the baselines even when trained with 100K samples which
is ∼ 15× less training data than the data used to train the
baseline methods (see fig. 1). More specifically, SHG-VQA
obtains 43.69% vs. 42.11% for HCRN which is the best



Table 1. Results on AGQA dataset for different question types w.r.t vision (w) and question-only (w/o) variants of all models. Best results
are shown in bold font, second best results are in blue font. SHG-VQA performs better or on par to the baselines with only 100K samples
(baselines use 1.6M training samples). Numbers are reported in percentages.

Reasoning Semantic Structure Overall

Method obj-rel rel-action obj-action superlative sequencing exists duration activity obj rel action query compare choose logic verify binary open all

PSAC [6] w/o 37.91 49.95 50.01 33.59 49.78 50.04 45.77 4.88 38.03 50.04 47.07 31.63 49.57 46.87 50.09 49.97 49.01 31.63 40.26
w 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 37.97 49.95 46.85 31.63 49.49 46.56 49.96 49.90 48.87 31.63 40.18

HME [3] w/o 36.44 49.98 50.09 32.53 49.79 50.02 42.67 6.53 36.58 50.05 45.84 29.52 49.16 46.12 50.17 49.93 48.68 29.52 39.03
w 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 37.55 49.99 47.58 31.01 49.71 46.42 49.87 49.96 48.91 31.01 39.89

HCRN [5] w/o 37.78 50.12 49.99 33.62 49.78 50.10 43.66 5.15 37.90 50.11 46.22 31.24 49.29 47.36 50.21 50.11 49.12 31.24 40.11
w 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 40.33 49.96 46.41 36.34 49.22 43.42 50.02 50.01 47.97 36.34 42.11

Ours (100K) w/o 37.42 49.94 50.06 32.53 49.77 49.97 46.62 5.06 37.57 49.96 47.27 30.92 49.66 46.69 50.01 49.97 48.98 30.92 39.88
w 41.93 49.26 51.52 35.24 50.11 52.24 45.62 5.61 42.17 51.14 46.36 38.69 49.82 42.37 50.84 52.59 48.77 38.69 43.69

Ours (full) w/o 38.72 50.03 49.99 33.87 49.85 50.02 48.23 5.80 38.83 50.01 48.11 32.58 49.94 47.96 50.16 49.98 49.43 32.58 40.95
w 46.42 60.67 64.63 38.83 62.17 56.06 48.15 10.12 47.61 56.19 53.83 43.42 60.68 47.76 52.86 56.63 55.04 43.42 49.20

model for AGQA on overall VQA accuracy. Similarly, we
obtain on par or often better performance on the three test-
ing metrics of indirect references, novel compositions and
more compositional steps. We provide a detailed break-
down of our results with 100K and 1.4M training samples
in comparison with the baselines which were trained on the
full training set of 1.6M QA pairs. See table 1, 2, 3 for
detailed results.

D.1.2 Results for more compositional steps

AGQA provides a train-test split to test models’s general-
ization to more compositional steps where training split has
questions with fewer compositional steps. On this metric,
SHG-VQA with 100K training samples achieves compara-
ble results to the SOTA model. When compared to the best
performing model for each question type, our full model
gains ↑ 4.15% absolute points over the best model (HME:
48.09% vs. ours: 52.24%) for binary questions, ↑ 1.2% im-
provement over SOTA (HCRN:23.70% vs. ours:24.90%)
for open-answer questions, achieving overall ↑ 4.14% im-
provement on all questions. Fig. 4 shows correlation be-
tween accuracy and compositional steps. A linear regres-
sion model is fit to each method’s performance w.r.t num-
ber of compositional steps. For binary questions, the base-
line methods perform significantly lower even with single
compositional-step questions, whereas our model unsur-
prisingly yields the highest accuracy. SHG-VQA is con-
sistently better for all compositional steps on binary ques-
tion than the baselines. Nonetheless, we observe a nega-
tive correlation between accuracy and compositional steps
for binary questions. For open questions, a slightly posi-
tive correlation between accuracy and compositional steps
is noticed for all methods including SHG-VQA. For over-
all accuracy on this metric, although SHG-VQA is able to
bridge the gap between human accuracy and VQA algo-
rithms by providing SOTA results, there is still large room
for improvement on this novel task.

Table 2. Evaluation on AGQA’s novel compositions.

Method training data size Binary Open All

PSAC 1.6M 46.49 19.34 34.71
HME 1.6M 45.42 17.17 33.15

HCRN 1.6M 44.88 20.12 34.13

SHG-VQA 100K 46.55 22.2 36.01
SHG-VQA 1.4M 49.27 25.92 39.15

Table 3. Comparison on AGQA’s more compositional steps with
our model with 100K training samples and full training set.

Method training data size Binary Open All

PSAC [6] 1.6M 47.65 14.81 47.19
HME [3] 1.6M 48.09 20.98 47.72

HCRN [5] 1.6M 46.96 23.70 46.63

SHG-VQA 100K 47.13 22.66 46.97
SHG-VQA 1.4M 52.24 24.90 51.86

Table 4. Additional results on AGQA for all question types.

Question Types Blind Model (Q-Only) Deaf Model (V+HG) SHG-VQA-100K

R
ea

so
ni

ng

object-relationship 37.42 15.16 41.93
relationship-action 49.94 0.01 49.26

object-action 50.06 0.06 51.52
superlative 32.53 14.88 35.24
sequencing 49.77 0.04 50.11

exists 49.97 17.91 52.24
duration comparison 46.62 7.89 45.62
activity recognition 5.06 0.00 5.61

Se
m

an
tic object 37.57 13.71 42.17

relationship 49.96 13.92 51.14
action 47.27 2.92 46.36

St
ru

ct
ur

e query 30.92 15.63 38.69
compare 49.66 1.08 49.82

choose 46.69 9.72 42.37
logic 50.01 18.02 50.84

verify 49.97 18.12 52.59
binary 48.98 10.65 48.77

open 30.92 15.63 38.69
all 39.88 13.16 43.69

D.1.3 Additional results on AGQA for model varia-
tions

AGQA [4] report results for each baseline with language-
only model to compare with the respective full models. Fol-
lowing this, we train SHG-VQA in three settings on AGQA:



Table 5. Results for different training protocols. Results shown
for STAR test set. Rows 1,2, and 3 are with SlowR50 and rows 4,5
show results with MViT-B backbone.

Q. Type Interaction Sequence Prediction Feasibility Overall

(1) separate training 47.98 42.03 35.34 32.52 39.47
(2) all w/ filtered data 37.67 36.91 37.29 33.04 36.23
(3) all-SlowR50 42.38 42.49 37.85 30.78 38.37

(4) all–SlowR50 42.38 42.49 37.85 30.78 38.37
(5) all–MViTB 43.35 44.37 38.55 33.91 40.04

Table 6. SHG-VQA with SlowR50 backbone evaluated on STAR-
Humans. Numbers are reported in percentages.

Interaction Sequence Prediction Feasibility Overall

SHG-VQA 52.00 45.00 31.00 23.00 37.75

blind model (w/o vision), deaf model (vision-only), and full
model. We perform this study using our 100K subset. Re-
sults are discussed below: Blind model performance We
evaluate our question-only model which is a BERT-like 5
layers transformer encoder against our full vision model (ta-
ble 4) to measure how much linguistic bias our model is
able to exploit from the dataset. With results comparable
to HCRN’s vision and no-vision counterparts, our language
model is able to achieve an overall video-question answer-
ing accuracy of 39.88%, only 3.81% less than our vision
model. The vision model outperforms its language-only
counterpart throughout a majority of the question types,
however the language-only model has slight improvements
over the vision model in duration comparison question types
and action semantics, where it performs 1% better. Addi-
tionally, the language model also performs slightly better in
regards to overall accuracy on binary question types. Fur-
ther examining binary question categories (table 4) show
that the model again performs roughly 1% better than its
vision counterpart on binary object-relationship and dura-
tion comparison reasoning categories, as well as binary ob-
ject and action semantic question types. The most note-
worthy difference is that this model outperforms the vision
model by 4.32% in the choose structural category. Over-
all, the full model outperforms this language-only model in
most categories. Deaf model performance In addition to
the language-only model, we also train a deaf (vision-only)
model to measure biases that may arise from the visual in-
put alone (table 4). This version of our model obtained an
overall VQA accuracy of 13.16% on all question types, per-
forming worse than both our full, and language-only models
in every question category. From this, we conclude that the
visual bias is much less than the language bias.
Ablation on T/M/N? We chose clip length T=16 follow-
ing prior works. We report results for varying clip length T
on AGQA dataset in Tab. 7 with models are trained for 10-
15 epochs on 100K QA pairs. Hyperparameters M and N

capture the number of actions and relations we want to pre-
dict for each frame. Therefore, video length does not effect
M/N.

T binary open all

16 48.77 38.69 43.69
24 46.30 38.89 42.57
32 45.50 37.29 41.36

Table 7. Results on AGQA dataset for varying video clip length T.

D.2. STAR

D.2.1 Results w.r.t different training protocols

We experimented with different training protocols for
STAR dataset including separate trainings used in [8], sin-
gle model with filtered questions as explained in C.2, and
training a single model on the full training set. We use
SlowR50 backbone for this study and find that using sep-
arate trainings is most beneficial for interaction questions
and overall accuracy. Using filtered questions although per-
form best for feasibility questions, but it hurts the perfor-
mance on other question types. When trained on full train-
ing data with SlowR50 and MViT-base backbones, using
MViT yields better performance.

D.3. Results on STAR-Humans

STAR-Humans is a subset provided by [8] with 400 free-
form questions asked by humans. We evaluate SHG-VQA-
SlowR50 on STAR-Humans and obtain the results shown
in table 6. For this subset, SHG-VQA performs best for in-
teraction questions (52.00%) and worst on feasibility ques-
tions (23%).

E. Qualitative results
Comparison between optimal matching with full video
compared to optimal matching for each timestep: Fig-
ures 5 and 6 show qualitative comparison of predicted situa-
tion hyper-graphs from situation hyper-graph decoder in the
proposed model. Note that the situation hyper-graph solely
relies on the video input. Hence, we show the input video,
ground-truth graph, and predicted situation hyper-graphs in
two settings: 1) optimal matching with full video instead for
each timestep t over LAct and Lrel (baseline); 2) optimal
matching for each timestep t for the actions and relations
set predictions (as described in eq.2 and eq.4 in the main
paper). We observe that when using the optimal match-
ing without imposing the time constraint (i.e., to do optimal
matching at each time step), it results in duplicate predic-
tions at frame level. In figure 5 and 6, the first two rows
show the video frames and the corresponding ground truth
situation hyper-graph respectively. Row 3 shows the situa-
tion hyper-graphs we obtain with the optimal matching for



Table 8. Training configurations for SHG-VQA on STAR dataset.

Experiment backbone Batch Size Models trained Loss Test set Overall Acc.

Adapted batch size per QT:

SHG-VQA (Q + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.47
SHG-VQA (Q + HG) Resnext101 (16, 16, 4, 4) 4 L(eq.1) test 38.28
SHG-VQA (Q + V) Slow R50 (8, 8, 8, 8) 4 Lvqa test 30.81
SHG-VQA (Q + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.47
SHG-VQA (Q + V + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.18

Hypergraph components:

SHG-VQA (Q + HG) Action only – Act=3 Slow R50 32 1 L(eq.1) val 38.68
SHG-VQA (Q + HG) Rel. only – Rel=8 Slow R50 32 1 L(eq.1) val 35.16
SHG-VQA (Q + HG) Both – Act=3, Rel=8 Slow R50 32 1 L(eq.1) val 39.20

Number of queries

SHG-VQA (Q + HG) Act=2, Rel=8 Slow R50 32 1 L(eq.1) val 38.34
SHG-VQA (Q + HG) Act=3, Rel=8 Slow R50 32 1 L(eq.1) val 39.20
SHG-VQA (Q + HG) Act=4, Rel=8 Slow R50 32 1 L(eq.1) val 37.06
SHG-VQA (Q + HG) Act=3, Rel=12 Slow R50 32 1 L(eq.1) val 39.90
SHG-VQA (Q + HG) Act=4, Rel=12 Slow R50 32 1 L(eq.1) val 38.39

the full video. In edge labels, we show the predicted rela-
tionship as well as the count of multiple edges between two
nodes. For brevity, we show every 4th frame i.e., frames
1, 5, 9, 13. We can see in row 3, that the predicted graph is
sparse and not able to capture all relationships due to suffer-
ing from the duplicate predictions problem. Additionally, it
sometimes predicts no-class ϕ label i.e. empty set for ac-
tions and predictions as we can see in fig 5, row 3, column
3. Row 4 shows the predicted situation hyper-graphs with
the imposed constraint of optimal matching at frame-level.
We can see that the proposed solution for optimal matching
greatly improves the quality of generated hyper-graphs. See
Tab. 9 for quantitative results.

Set Pred. Loss Interaction Sequence Prediction Feasibility Overall

full video 39.81 40.69 30.17 29.91 35.15
frame-wise 39.42 41.83 33.8 27.48 35.63

Table 9. Results for SHG-VQA model on STAR test set.

F. Computational Cost of SHG-VQA
The computational cost of SHG-VQA includes video

and text encoders with the little overhead from decoders for
decoding graph queries. At inference time, the decoders’
output is directly sent to cross-attentional transformer along
with the meta embeddings without any graph prediction.
Given that we only use L=5 layers for all encoders and
decoders in SHG-VQA, the depth of the SHG-VQA is 12
layers i.e., comparable to existing vision-language methods,
e.g., ALBEF.

G. Ethical considerations
As our system is trained on real-world data, it might cap-

ture negative data inherent biases, such as actions only ex-
ecuted by people with specific clothing or stereotype ques-
tions. We are not aware of such stereotypes in the here used

datasets AGQA and STAR but would recommend assessing
the fairness of any system based on this work before putting
it in any production environment.



Sample video

Groundtruth hypergraph

Optimal matching over full video

Optimal matching for each timestep t (proposed in eq.2 and eq.4 in the main paper)

Figure 5. Ground-truth and predicted situation hyper-graph for every 4th frame in a clip of length 16. Row 1 shows video frames, row 2
shows the ground-truth situation hyper-graph, row 3 shows predicted graphs from the model with set prediction loss without considering
frames, row 4 shows predicted hyper-graph when the model is trained by matching each timestep t (the proposed loss function). The edges
show the person-object relationship labels along with the number of times it was predicted. (see Section E for discussion about results.)



Sample video

Groundtruth hypergraph

Optimal matching over full video

Optimal matching for each timestep t (proposed in eq.2 and eq.4 in the main paper)

Figure 6. Ground-truth and predicted situation hyper-graph for every 4th frame in a clip of length 16. Row 1 shows video frames, row 2
shows the ground-truth situation hyper-graph, row 3 shows predicted graphs from the model with set prediction loss without considering
frames, row 4 shows predicted hyper-graph when the model is trained by matching each timestep t (the proposed loss function). The edges
show the person-object relationship labels along with the number of times it was predicted. (see Section E for discussion about results.)
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