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Figure 1. Ambiguity-Aware Depth Estimates. Hypothesis from two input views with non-opaque surfaces. This figure shows that in both
cases, our ambiguity-aware prior is able to recover a distribution of depth estimates that is multimodal. These multimodal distributions allow
to capture the room as well as the recover the objects behind the glass. Given the multiple views with multimodal distributions, NeRF is able
to find the mode that is consistent, hence allowing for less blurry and better photometric reconstruction. Please view the attached video
demo for the results on this In-the-Wild scene.

‘

1



PSNR ↑ SSIM ↑ LPIPS ↓
Vanilla NeRF [8] 17.19 0.559 0.457

DDP [9] 19.18 0.651 0.361

SCADE 20.13 0.662 0.358

Table S1. Quantitative results for the Tanks and Temples [5]
dataset.

S.1. Additional Results

S.1.1 Experiments on Tanks and Temples

We conduct further experiments to test the robustness of
SCADE. We evaluate on three scenes from the Tanks and
Temples [5] dataset, namely three large indoor rooms -
Church, Courtroom and Auditorium scenes. The training set
consists of 21, 26 and 21 sparse views for the Church, Court-
room and Auditorium scenes respectively, and the test set
consists of 8 sparse views, so the amount of data is similar
to that used in prior work [9]. We also followed similar data
preprocessing steps as prior work [9] and ran SfM [10] on
all images to obtain camera poses for training.

As shown in Table S1, SCADE trained with the same out-
of-domain prior that we used for the other datasets (which
was trained on Taskonomy [11]) outperforms the baselines
on the Tanks and Temples dataset as well. Moreover, Fig-
ure S2 shows qualitative results. As shown, SCADE is able
to recover objects better than the baselines such as the table
in the Church, the group of chairs in the Courtroom (second
column), and the rows of seats in the Auditorium (clearer in
the side-view seats on the second column). Moreover, results
also show that SCADE avoids clouds of dust such as the
lights on the wall of the Church (second column), painting
on the wall of the Courtroom (last column) and details on
the repetitive seats of the auditorium.

S.1.2 Video Demo

Our project page scade-spacecarving-nerfs.github.io shows
a video trajectory from each of the three datasets in our
experiments. As shown on the Scannet scene, SCADE is
able to better recover and crisp up the black chair; on the
In-the-Wild data scene, the room and objects behind the
glass wall are better captured, and finally, on the Tanks and
Temples scene, the table on the center is more solid and also
clear up dust on the wall and aisle of the church.

S.1.3 Ablation on Number of Hypotheses M

We further ablate on the number of estimates M from our
ambiguity-aware prior for training SCADE. Table S2 shows
the quantative results for the Scannet dataset. As shown,
the results in general improve as we increase the number
of depth estimates as this gives us a better approximation

PSNR ↑ SSIM ↑ LPIPS ↓
M = 1 21.22 0.714 0.318
M = 5 21.05 0.722 0.304
M = 10 21.41 0.729 0.296
M = 20 21.54 0.732 0.292
M = 40 21.61 0.729 0.293
M = 80 21.58 0.729 0.295

Table S2. Ablation on M . We ablate on the number of depth
estimates used from our ambiguity-aware prior to train SCADE.

of the depth distribution. We observe that the improvement
is marginal as we increase the number of depth estimates
beyond 20. Hence, we use M = 20 in our experiments.

S.2. Implementation Details

We train our ambiguity-aware prior with a batch size of
16 and use a learning rate of 0.001 for the base model, and
0.0001 for the MLP layers before AdaIn [2]. We use a latent
code dimension of 32, and we follow the standard cIMLE
training strategy [7] and sample 20 latent codes per image
and resample every 10 epochs.

For our space carving loss, we model the joint distribution
of the ray termination distances for all rays in each training
image in terms of the marginal distributions of each ray
and a copula. That is, for each ray rj in an image I where
j ∈ {1, · · · , R}, we use Fθ,o(j),d(j) to denote the cumula-
tive distribution function of its ray termination distance tj .
We define the copula, i.e. the joint cumulative distribution
function of ray termination distances for rays r1, r2, ..., rR,
as

C(u1, · · · , uR)

=Pr[Fθ,o(1),d(1)(t1) ≤ u1, · · · , Fθ,o(R),d(R)(tR) ≤ uR]

=min{u1, . . . , uR}

Thus, to sample from a set of rays for a given training
image, we draw ui ∼ U(0, 1), and obtain samples x(j)

i using
Eq. 4 (main paper) ∀j ∈ [1, ..., R].

To train our NeRF model, we use a batch size of 1024
rays for 500k iterations. We use the Adam optimizer [4]
with a learning rate of 5e−4 decaying to 5e−5 in the last
100k iterations. We use the same architecture as the original
NeRF [8], which samples 64 points the coarse network and
an additional 128 points for the fine network. Because the
depth estimates are in relative scale, we directly optimize
for the scale and shift for each input image. We directly
optimize a 2-dim variable for each input image that scales
and shifts depth hypotheses initialized with the sparse SfM
points. These variables are jointly optimized with the NeRF
for the first 400k iterations, and are then kept frozen for the
last 100k iterations.

https://scade-spacecarving-nerfs.github.io


Figure S1. Depth Estimate Samples. Here we show two examples
of train images from scenes used in our experiments that show the
ambiguity in (top) different degrees of convexity and (b) albedo vs
shading ambiguity on the door frame and possible existence of an
object inside the bookshelf. Please see Fig. S3 for more examples.

S.3. Ambiguity-Aware Depth Estimates

We show some samples from the depth distribution of our
multimodal prior from scenes in ScanNet and our in-the-wild
data in Figures 1 and S1. We see that depth from a single
input image is ambiguous as captured by our multimodal
prior. In Figure 1, we are able to capture the multimodality
in ray termination distance caused by non-opaque glass sur-
faces. In Figure S1 (top row) we are able to capture different
degrees of concavity of the sofa as well as the ambiguity
in the depth of the far wall and floor. In Figure S1 (bottom
row), we have ambiguity on the presence of a dark colored
object on the boxed shelf and the depth of the door w.r.t. the
door frame due to albedo vs shading ambiguity. Figure S3
shows more samples of our multimodal depth estimates on
train images for the different scenes used in our experiments.
Note that the depth map visualizations are normalized per
image, i.e. the colors represent per image relative depth.

Adaptation of the cIMLE [7] proof for our Ambiguity-
Aware Prior

Here we show an adaptation of the proof provided in
IMLE [6] in the context of learning our ambiguity-aware
depth estimates. Recall that we are given a set of input
images {I1, I2, ..., In} each with a corresponding ground
truth depth map D1, D2, ..., Dn. As we know that monocular
depth estimation is inherently ambiguous, we desire to learn
a multimodal distribution of depth estimates conditioned on
an input image given only one ground truth lable (i.e. depth
map).

Thus, we want to learn the network parameters ϕ for
conditional distribution G such that Gϕ(I, z) models the
distribution of depth estimates for a given input image I ∈
{I1, I2, ..., In}, where z ∼ N (0, I) are latent codes sampled
from a normal distribution.

Unlike GAN’s [3] that optimize that each sample is simi-
lar to a ground truth data point, cIMLE [7] prevents mode
collapse by instead enforcing that all ground truth data points
are explained by at least one generated sample. Hence, in
order to learn ϕ, the objective function that we want to opti-
mize is maximizing the sum of the likelihoods at the training
examples.

Consider our ambiguity-aware prior Gϕ,i, an implicit gen-
erative model, the likelihood induced by this model Pϕ,i is
computationally intractable to compute as it cannot be ex-
pressed in closed form. In this proof, we show that maximiz-
ing this likelihood is equivalent to optimizing a sample-based
objective, making it tractable. We first i) rewrite the desired
objective function (Sec S.3.1), ii) show its equivalence to
the loss function used in training (Sec S.3.2), then finally
iii) show its equivalence to maximizing the sum of the likeli-
hoods at the training examples, i.e. the single ground truth
depth maps associated with each image (Sec S.3.3).

S.3.1 Objective function

Let’s consider the following objective function:

max
ϕ

L{δi}i
(ϕ) := max

ϕ
E{yi,j∼Pϕ,i}i,j

[ 1
n

n∑
i=1

1

wi

(
δi−

1

M

M∑
j=1

Φδi(d(yi,j , Di)
)]

(1)

yi,j is a sampled depth estimate, i.e. yi,j = G(Ii, zj), M
is the number of samples drawn, d(yi,j , Di) denotes the
distance between the sampled depth estimate and the given
ground truth depth map for image Ii.

δi > 0 denotes the threshold of the radius of the largest
neighborhood that we are interested in, i.e. the neighborhood
around the ground truth data points (depth maps) where we
are interested in having generated depth estimate samples
at. This radius is dependent on the training example (hence
the subscript i) as some examples may have a larger/smaller
neighborhood of interest than others. Φδi is a function we
choose, which we will define below, and wi is a weighting
factor that is also dependent on the training example.

Note that here, we reuse L to denote the likelihood, and
it should not be confused with the notation for the loss
functions in the main paper.

Choosing Φδ .

For δ > 0 (threshold on the radius), Φδ is chosen as

Φδ(t) =

{
t 0 ≤ t ≤ δ

δ t > δ
, (2)

Intuitively, this assigns the random variable t, which is our
case will be the the distance d(·) between the ground truth
depth and a sampled depth estimate, to a value depending on
the radius threshold δ. Any distance larger than δ, i.e. is the
sampled estimate is far enough, is set to δ.



Consequently, the chosen antiderivative is shown below

Φ′
δ(t) =

{
1 0 ≤ t ≤ δ

0 t > δ

Relating to model distribution Pϕ,i

Three lemmas written below tie together the likelihood Lδ

to the objective function.

Lemma 1. Let Y be a non-negative random variable and
f be a continuous function on [0,∞), and f ′ to denote a
function whose antiderivative is f .

E [f(Y )] = f(0) +

∫ ∞

0

f ′(t)Pr(Y ≥ t)dt

Proof.

f(0) +

∫ ∞

0

f ′(t)Pr(Y ≥ t)dt

= f(0) +

∫ ∞

0

∫ ∞

t

f ′(t)p(y)dydt

= f(0) +

∫
{y≥t,t≥0}

f ′(t)p(y)d

(
y
t

)
= f(0) +

∫ ∞

0

∫ y

0

f ′(t)p(y)dtdy

= f(0) +

∫ ∞

0

(∫ y

0

f ′(t)dt

)
p(y)dy

= f(0) +

∫ ∞

0

(f(y)− f(0)) p(y)dy (2nd FTC)

= f(0) +

∫ ∞

0

f(y)p(y)dy −
∫ ∞

0

f(0)p(y)dy

= f(0) + E [f(Y )]− f(0)

= E [f(Y )]

Lemma 2. With the chosen Φδ(·) and Φ′
δ(·) shown

previously, E{yi,j∼Pϕ,i}i,j
[Φδi(d(yi,j , Di))] = δi −∫ δi

0
Pr(d(yi,j , Di) < t)dt.

Proof. By definition, Φδi(0) = 0.

E{yi,j∼Pϕ,i}i,j
[Φδi(d(yi,j , Di)]

= Φδi(0) +

∫ ∞

0

Φ′
δi(t)Pr(d(yi,j , Di) ≥ t)dt

(From Lemma 1)

=

∫ δi

0

1 · Pr(d(yi,j , Di) ≥ t)dt

+

∫ ∞

δi

0 · Pr(d(yi,j , Di) ≥ t)dt

=

∫ δi

0

Pr(d(yi,j , Di) ≥ t)dt

=

∫ δi

0

(1− Pr(d(yi,j , Di) < t)) dt

= δi −
∫ δi

0

Pr(d(yi,j , Di) < t)dt

Lemma 3. The likelihood above is equivalent to
L{δi}i

(ϕ) = 1
n

∑n
i=1

1
Mwi

∑M
j=1

∫ δi
0

Pr(d(yi,j , Di) <

t)dt.

Proof.

L{δi}i
(ϕ)

= E{yi,j∼Pϕ,i}i,j

 1

n

n∑
i=1

1

wi

δi −
1

M

M∑
j=1

Φδi(d(yi,j , Di))


=

1

n

n∑
i=1

1

wi

δi −
1

M

M∑
j=1

E{yi,j∼Pϕ,i}i,j
[Φδi(d(yi,j , Di)]


=

1

n

n∑
i=1

1

wiδi −
1

M

M∑
j=1

(
δi −

∫ δi

0

Pr(d(yi,j , Di) < t)dt

)
(From Lemma 2)

=
1

n

n∑
i=1

1

Mwi

M∑
j=1

∫ δi

0

Pr(d(yi,j , Di) < t)dt

S.3.2 Equivalence to loss function for training

Here shows the equivalence of a tractable sample-based loss
function used for training.

Radius Threshold δi Lemma 3 shows that the likelihood
computes the probability the model Pphi assigns to the



neighborhood of the training sample, which is controlled
by the radius threshold δi. To maximize the likelihood, a
small neighborhood is desired, hence a small value of δi is de-
sirable. However, if δi is “too small", then by the chosen Φδi ,
if d(yi,j , Di) > δi, for all j, then d(yi,j , Di) = δi∀j, which
leads to 1

n

∑n
i=1

1
wi

(δi − 1
M

∑M
j=1 Φδi(d(yi,j , Di) = 0.

This leads to having no gradients w.r.t. to ϕ since it is con-
stant, which does not allow for network training. Thus the
smallest δi that can have such that the expression’s value is
not constant and allows for gradients is minj∈[M ] d(yi,j , Di).
The likelihood objective then becomes:

L{δi}i
(θ) = E{yi,j∼Pϕ,i}i,j[

1

n

n∑
i=1

1

wi

(
δi −

M − 1

M
δi −

1

M
min
j∈[M ]

d(yi,j , Di)

)]

= E{yi,j∼Pϕ,i}i,j

[
1

n

n∑
i=1

1

wi

(
1

M
δi −

1

M
min
j∈[M ]

d(yi,j , Di)

)]

= E{yi,j∼Pϕ,i}i,j

[
1

nM

n∑
i=1

1

wi

(
δi − min

j∈[m]
d(yi,j , Di)

)]

The sample-based loss function then becomes equivalent
to the objective of maximizing the likelihood as follows:

argmax
ϕ

L{ϕi}i
(ϕ)

= argmax
ϕ

E{yi,j∼Pϕ,i}i,j[
1

nM

n∑
i=1

1

wi

(
δi − min

j∈[M ]
d(yi,j , Di)

)]

= argmax
ϕ

E{yi,j∼Pϕ,i}i,j

[
n∑

i=1

δi
wi

− 1

wi
min
j∈[M ]

d(yi,j , Di)

]

= argmax
ϕ

E{yi,j∼Pϕ,i}i,j

[
−

n∑
i=1

1

wi
min
j∈[M ]

d(yi,j , Di)

]

= argmin
ϕ

E{yi,j∼Pϕ,i}i,j

[
n∑

i=1

1

wi
min
j∈[M ]

d(yi,j , Di)

]

which is the sample-based loss function, i.e. taking the
minimum loss for the set of drawn samples. In our case,
wi = 0∀i, and for each training data point, we sample
M = 20 estimates by drawing zj ∼ N (0, I), and taking
the minimum loss w.r.t. to the corresponding single ground
truth depth map Di for the training data point. This allows
us to learn multimodal depth distributions to capture the
inherent ambiguities in monocular depth estimation.

S.3.3 Equivalence to maximizing the sum of the likeli-
hoods.

For completeness, here shows the equivalence of the objec-
tive function to maximizing the sum of the likelihood as
proven in IMLE [6]. The learning of ϕ involves solving a
sequence of optimization problems at current values for δi,
and as optimization progresses later into the sequence, δi
becomes smaller and smaller and eventually converges to
the maximum likelihood.

Lemma 4. lim{δi→0+}i
L{δi}i

(ϕ) = 1
n

∑n
i=1 pδ(Di).

Proof.

L{δi}i
(ϕ)

=
1

n

n∑
i=1

1

Mwi

M∑
j=1

∫ τi

0

Pr(d(yi,j , Di) < t)dt

(From Lemma 3)

=
1

nM

n∑
i=1

M∑
j=1

1

wi

∫ τi

0

∫
Bt(Di)

pϕ,i(y)dydt

=
1

nM

n∑
i=1

M∑
j=1

∫ δi
0

∫
Bt(Di)

Pϕ,i(y)dydt∫ δi
0

∫
Bt(Di)

dydt

lim
{δi→0+}i

L{δi}i
(ϕ)

=
1

nM

n∑
i=1

 lim
δi→0+

 M∑
j=1

∫ δi
0

∫
Bt(Di)

pϕ,i(y)dydt∫ δi
0

∫
Bt(Di)

dydt


=

1

nM

n∑
i=1

M∑
j=1

 lim
δi→0+

∫ δi
0

∫
Bt(Di)

pϕ,i(y)dydt∫ δi
0

∫
Bt(Di)

dydt


=

1

nM

n∑
i=1

M∑
j=1

(
lim

δi→0+

∫
Bδi

(Di)
pϕ,i(y)dy∫

Bδi
(Di)

dy

)
(L’Hôpital and 2nd FTC)

=
1

nM

n∑
i=1

M∑
j=1

 lim
δi→0+

∫ δi
0

∫
{y|d(y,Di)=r} pϕ,i(y)dydr∫ δi
0

∫
{y|d(y,Di)=r} dydr


=

1

nM

n∑
i=1

M∑
j=1

(
lim

δi→0+

∫
{y|d(y,Di)=δi} pϕ,i(y)dy∫

{y|d(y,Di)=δi} dy

)
(L’Hôpital and 2nd FTC)

=
1

nM

n∑
i=1

M∑
j=1

pϕ,i(Di)

=
1

n

n∑
i=1

pϕ,i(Di)



S.4. Training Images Samples
We also show samples of train images from the three

scenes in each of the three datasets in our experiments. Sam-
ples are shown in Figure S4.
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Figure S2. Qualitative Results for the Tanks and Temples [5] dataset.



Train Image Train ImageAmbiguity-Aware Depth Estimate Samples Ambiguity-Aware Depth Estimate Samples

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure S3. Samples from our Ambiguity-Aware Depth Estimates on train images of the different scenes used in our experiments.
Ambiguity is shown in [Left; right]: (a) How far the back wall is relative to the chair as well as the width of the cabinet and how far it is
relative to the desk; whether the door is at a different compared to the wall and the relative depth of the the second chair w.r.t. to the nearer
chair and the wall. (b) Objects on the desk have varying depths, e.g. it is unclear from a single view whether the papers have a thickness or
not; relative depth of the chair w.r.t. the wall and the camera (c) Depth of the bookshelf; albedo v.s. shading of the door w.r.t to the door
frame. (d) Depth of the curtain, whether it is flat on the wall or not, and without scene context, it can also be interpreted as painted texture on
the wall; relative depths of the different cluttered objects. (e) Relative depths of the barrier, the seats and the far back wall with a cabinet;
depth of the far back corner of the room w.r.t. the desk and chair and the camera. (f) Whether the painting is flat on the wall or the frame
protrudes it out; relative depths of the chairs and the far back wall. (g) Whether the painted texture is convex or is flat (i.e. just painted) on
the wall; whether there is a far back door or is just a texture on the wall. (h) Both are similar to g. left but on different viewpoints and on the
opposite side of the room. (i) Non-opaque surface ambiguity due to the glass cabinet; glass door behind the sofa is also non-opaque.
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Figure S4. Samples of training images from the three scenes from the three datasets - Scannet [1], In-the-Wild and Tanks and Temples [5].
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