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A. Proof of Lemma 1
Proof. We begin with rewriting the expression for ∇θ l̃,

∇θ l̃ = ∇T
θ fθ (y) (fθ (y)− x̃) =

= ∇T
θ fθ (y) (fθ (y)− (x+w)) =

= ∇T
θ fθ (y) (fθ (y)− x)−∇T

θ fθ (y)w =

= ∇θl −∇T
θ fθ (y)w .

(1)

We proceed to calculating the expectation of ∇θ l̃,

E
[
∇θ l̃

]
= E

[
E
[
∇θ l̃

∣∣∣x, z]] =
= E

[
E
[
∇θl −∇T

θ f (y)w
∣∣x, z]] =

= E
[
E [∇θl|x, z]− E

[
∇T

θ f (y)w
∣∣x, z]] =

= E
[
∇θl −∇T

θ f (y)E [w|x, z]
]
=

= E
[
∇θl −∇T

θ f (y)E [w]
]
=

= E
[
∇θl −∇T

θ f (y) · 0
]
=

= E [∇θl] = ∇θL .

(2)

The first equality, E
[
∇θ l̃

]
= E

[
E
[
∇θ l̃

∣∣∣x, z]], is correct
by the law of total expectation, and E [w|x, z] = E [w] is
true due to the independence of w in x and z. Finally, we
get

Bias
[
∇θ l̃

]
= E

[
∇θ l̃

]
−∇θL = 0 , (3)

which completes the proof.

B. Dependency Reduction – Mathematical
Analysis

In this section we bring proofs of statements used in Sec-
tion 4.2, organized as follows. In Section B.1 we prove the
convergence of sy,r to a Gaussian distribution, and in Sec-
tion B.2 we prove our statements regarding the shift of the
mean in the case of dependencies of types (I) and (II).

B.1. Convergence to Gaussian

Our goal is to prove that sy,r convergences in distribu-
tion to a Gaussian. We start with the assumption that the
ground truth image is a sum of two statistically independent
random variables, x = x̄+ µx, where µx is an image mean
(a scalar) and x̄ is a zero-mean vector. Similarly, we as-
sume that w = w̄ + µw. Our additional assumption is that
x̄, z, and w̄ are m-dependent in any dimension and follow
zero-mean and stationary distributions.

Definition 1 (m-dependent sequences [1]).
Let X1, X2, . . . be a sequence of random variables.
The sequence is m-dependent if (X1, . . . , Xi) and
(Xi+k, . . . , Xi+k+l) are independent whenever k > m.

By m-dependency in any dimension, we mean that
(X1,1, . . . , Xi,j) and (Xi+k,j+r, . . . , Xi+k+l,j+r+p) are
independent if max{k, r} > m. For natural images dis-
tribution, stationarity and m-dependency are common as-
sumptions. Stationarity means translation invariance, and
the m-dependency assumption implies that each pixel is de-
pendent only on its local neighborhood of radius m/2. In-
deed, m-dependency is the property that allows effective
denoisers to have relatively small respective fields. To pro-
ceed with the proof, we need the following definition and
theorem.

Definition 2 (Strongly mixing sequences [1]).
Let X1, X2, . . . be a sequence of random variables, and let
αk be a number such that

sup |P (A ∩B)− P (A)P (B)| ≤ αk

for A ∈ σ (X1, . . . , Xi), B ∈ σ (Xi+k, Xi+k+1, . . . ), and
i ≥ 1, k ≥ 1. The sequence is said to be strongly mixing if
αk −→ 0 as k −→ ∞.

Theorem 3 (Central limit theorem for strongly mixing se-
quences, Theorem 1.7 in [2]).
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Let X1, X2, . . . be a stationary and strongly mixing se-
quence with E [Xi] = 0 such that for some δ > 0

E
[
|Xi|2+δ

]
< ∞ and

∞∑
i=1

(αi)
δ

2+δ < ∞ .

Denote Sn = X1 +X2 + · · ·+Xn, then

lim
n→∞

E
[
S2
n

]
n

= σ2 = E
[
X2

1

]
+ 2

∞∑
i=1

E [X1Xi] < ∞ .

If σ ̸= 0, then Sn

σ
√
n

converges in distribution to N (0, 1) as
n approaches infinity.

It follows from Theorem 3 follows that sum of m-
dependent stationary sequence converges in distribution to
a Gaussian, as stated in the following corollary.

Corollary 4. Let X1, X2, . . . be a stationary and m-
dependent sequence with E [Xi] = 0 such that for some

δ > 0, E
[
|Xi|2+δ

]
< ∞.

Denote Sn = X1 +X2 + · · ·+Xn, then

lim
n→∞

E
[
S2
n

]
n

= σ2 = E
[
X2

1

]
+ 2

m∑
i=1

E [X1Xi] < ∞ .

If σ ̸= 0, then Sn

σ
√
n

converges in distribution to N (0, 1) as
n approaches infinity.

Proof. To prove it, it suffices to show that from the m-
dependency, it follows that for any δ > 0,

∞∑
i=1

(αi)
δ

2+δ < ∞ . (4)

Note that for m-dependent sequences, αk = 0 for any
k > m. Thus, the sum becomes finite and thereby bounded,

∞∑
k=1

(αk)
δ

2+δ =

m∑
k=1

(αk)
δ

2+δ < ∞ . (5)

Armed with Corollary 4, we return to the proof of sy,r
convergence. Assuming that µx and µw are known, sy,r is
defined as

sy,r =
1

n2

n∑
i,j=1

(yi,j − µx) (ri,j − µw) . (6)

Note that in practice, µx and µw are unavailable, but they
can be estimated empirically,

µx ≈ 1

n2

n∑
i,j=1

yi,j , µw ≈ 1

n2

n∑
i,j=1

ri,j . (7)

Proposition 5. Let sy,r be as defined in equation 6. Then,
as n −→ ∞,

n

σ

(
sy,r + σ2

z

)
−→ N (0, 1) ,

where σ2
z = E

[
z2i,j
]

and

σ2 = lim
n→∞

E
[
s2y,w

]
.

Proof. We begin by rewriting the expression for r,

r = x̃− y = x+w − x− z = w − z . (8)

Substituting r into the expression for sy,r we get

sy,r + σ2
z =

1

n2

n∑
i,j=1

(yi,j − µx) (ri,j − µw) + σ2
z =

=
1

n2

n∑
i,j=1

(
(x̄i,j + zi,j) (w̄i,j − zi,j) + σ2

z

)
=

=
1

n2

n∑
i,j=1

ξi,j =
1

n

n∑
i=1

 1

n

n∑
j=1

ξi,j

 =
1

n

n∑
i=1

ζi ,

(9)

where ξi,j = (x̄i,j + zi,j) (w̄i,j − zi,j) + σ2
z and

ζi =
1
n

∑n
j=1 ξi,j . Clearly, sequence (ξ1,1, . . . , ξn,n)

is m-dependent in any dimension. Therefore (ζ1, . . . , ζn) is
m-dependent. In addition, E [ζi] = 0 as x̄i,j , zi,j , and w̄i,j

are zero-mean and independent. Also, E
[
|ζi|2+δ

]
< ∞

since x̄i,j , zi,j , and w̄i,j are bounded. Thus, according to
Theorem 3

n

σ

(
sy,r + σ2

z

)
−→ N (0, 1) .

B.2. Dependencies of Type (I) and (II)

We now turn to we prove our statements regarding the
type (I) and type (II) dependencies. Through the section,
we denote by σα,β the scalar covariances computed over
pairs of images α, β ∈ {x, x̃,y,w, z}, where σ2

α stands
for the scalar variances (σα =

√
σα,α). We start with the

proof that type (I) dependency implies E [sy,r] > −σ2
z . Re-

call that type (I) dependency is characterized by a positive
correlation between z and w. In addition, assume that there
is no dependency of type (II), i.e., x and w are independent.

Proposition 6. Suppose that w is independent of x, but
there is a dependency between w and z such that σz,w > 0.
Then E [sy,r] > −σ2

z .

Proof. Substituting equations 8 into E [sy,r] we get

E [sy,r] = σy,r = σx+z,w−z = σz,w − σ2
z > −σ2

z . (10)



We proceed to a discussion of type (II) dependency,
which occurs when x̃ and x tend to be dissimilar. Through
it, we assume that there is no dependency of type (I), i.e., w
and z are independent. First, we show that this dependency
is manifested in a negative correlation between w and x,
σx,w < 0. As mentioned in section 4.2,

σx,x̃ = σ2
x + σx,w . (11)

Recall that x̃ is built of patches taken from noisy images.
Thus, we can write

x̃ = x2 + z2 , (12)

where x2 is a clean image, which may differ from x, and z2
is an instantiation of input noise, which is independent of x
and x2. Thus,

σx,x̃ = σx,x2+z2 = σx,x2
≤ σxσx2

= σ2
x . (13)

A conclusion of equations 11 and 13 is that the dissimilarity
between x̃ and x reduces the value of σx,x̃, which means
that σx,w is necessarily negative. Finally, we prove that for
the dependency of type (II), we get E [sy,r] < −σ2

z .

Proposition 7. Suppose that w is independent on z, but
there is a dependency between w and x such that σx,w < 0.
Then E [sy,r] < −σ2

z .

Proof. Substituting equation 8 into E [sy,r] we have

E [sy,r] = σy,r = σx+z,w−z = σx,w − σ2
z < −σ2

z . (14)

C. Robustness of the Patch Matching
In section 4.2, we mention that we use large patches for

patch matching. This section shows that patches must be
large when dealing with correlated noise. The goal of patch
matching is to find similar clean patches by checking the
L2 distance between their noisy versions. However, does
the similarity between the noisy patches imply the similar-
ity between their clean counterparts? Assuming that noise
is independent of the image, the answer is yes, provided
the patches are large enough. Intuitively, patch size should
grow with the noise power, but do the noise correlations
matter? In this section, we show that, in addition to the
power of the noise, the patch size is heavily dependent on
the noise correlation range. The distance between the noisy
patches can be viewed as an estimator of the distance be-
tween their clean counterparts. We show that the variance
of this estimator can increase dramatically with the noise
correlation range. More specifically, we provide a lower
bound for the estimator’s variance, which depends on the
patch size and the noise autocovariance.

In this section, we use the following notations and as-
sumptions. Let y(1),y(2) ∈ Rn×n be two noisy patches,
and x(1),x(2) ∈ Rn×n be their clean versions, such that

y(1) = x(1) + z(1)

y(2) = x(2) + z(2) .
(15)

We assume that z(1) and z(2) are independent realizations of
2D zero-mean random process {Zi,j} with autocovariance
RZZ (τ1, τ2) and denote σ2

z = RZZ (0, 0). For this section
only, we assume that {Zi,j} is a Gaussian process. We de-
note by δx the normalized squared L2 distance between x(1)

and x(2). Similarly, δy stands for the normalized squared L2

distance between y(1) and y(2),

δx =
1

n2

n∑
i,j=1

(
x
(2)
i,j − x

(1)
i,j

)2
δy =

1

n2

n∑
i,j=1

(
y
(2)
i,j − y

(1)
i,j

)2
.

(16)

Theorem 8. Let δy be an estimator of δx, then δy has a
constant bias 2σ2

z , and its variance is bounded from below
by

var [δy] ≥
8

n2
σ4
zρ ,

where

ρ =
1

n2

n∑
i1,j1,i2,j2=1

(
RZZ (i1 − j1, i2 − j2)

σ2
z

)2

.

The bound is sharp since equality holds for δx = 0.

The proof of the theorem is given in appendix C.1. The
theorem shows that the bound is proportional to ρ, whereρ
can grow fast with the noise correlation range. We illustrate
this by the example of RZZ with bilinear decay,

RZZ (τ1, τ2) = g (τ1) g (τ2)

g (τ) = σz ·max

{
1− |τ |

θ
, 0

}
,

(17)

where 1
θ is the decay incline.

Proposition 9. Suppose RZZ as defined in equation 17.
Then

ρ ≥ 1

4

(
r +

1

r

)2

, r = min {n, ⌊θ⌋} .

The bound is sharp, the equality holds for θ = n and θ = 1.

The proof is given in appendix C.2. Proposition 10 shows
that for RZZ with bilinear decay, var [δy] exhibits quadratic
growth with respect to the correlation range (for θ ≤ n).



C.1. Proof of Theorem 8

Proof. We begin with introducing notations. Denote three
difference images by d(x), d(y), and d(z), where

d(x) = x(2) −x(1),d(y) = y(2) −y(1),d(z) = z(2) − z(1).

In addition, we define δx, δy , δz , and δxz as follows

δx =
1

n2

n∑
i,j=1

(
d
(x)
i,j

)2
, δy =

1

n2

n∑
i,j=1

(
d
(y)
i,j

)2
,

δz =
1

n2

n∑
i,j=1

(
d
(z)
i,j

)2
, δx,z =

1

n2

n∑
i,j=1

d
(x)
i,j d

(z)
i,j ,

(18)

where δx, δy , and δz are the normalized L2 norms of d(x),
d(y), and d(z), respectively, and δxz stands for a mixed ex-
pression. Then

d(y) = y(2)−y(1) = x(2)−x(1)+z(2)−z(1) = d(x)+d(z) .

Rewriting δy , we get

δy =
1

n2

n∑
i,j=1

(
d
(y)
i,j

)2
=

1

n2

n∑
i,j=1

(
d
(x)
i,j + d

(z)
i,j

)2
=

=
1

n2

n∑
i,j=1

(
d
(x)
i,j

)2
+

2

n2

n∑
i,j=1

d
(x)
i,j d

(z)
i,j +

1

n2

n∑
i,j=1

(
d
(z)
i,j

)2
= δx + 2δx,z + δz .

(19)

Therefore,

Bias [δy] = E [δy]− δx =

= E [(δx + 2δx,z + δz)]− δx =

= 2E [δx,z] + E [δz] ,

(20)

where

2E [δx,z] =
2

n2

n∑
i,j=1

E
[
d
(x)
i,j d

(z)
i,j

]
=

=
2

n2

n∑
i,j=1

d
(x)
i,j E

[
d
(z)
i,j

]
=

=
2

n2

n∑
i,j=1

d
(x)
i,j E

[
z
(2)
i,j − z

(1)
i,j

]
=

=
2

n2

n∑
i,j=1

d
(x)
i,j (0− 0) = 0 .

(21)

Since z(1) and z(2) are independent,

E
[(

d
(z)
i,j

)2]
= E

[(
z
(2)
i,j − z

(1)
i,j

)2]
= 2σ2

z . (22)

Then,

E [δz] =
1

n2

n∑
i,j=1

E
[(

d
(z)
i,j

)2]
=

1

n2

n∑
i,j=1

2σ2
z = 2σ2

z .

(23)

Substituting equations 21 and 22 into 20, we have

Bias [δy] = 2E [δx,z] + E [δz] = 0 + 2σ2
z = 2σ2

z . (24)

We proceed to calculate the variance.

var [δy] = var [(δy − δx)] =

= E
[
(δy − δx)

2
]
− (E [(δy − δx)])

2
=

= E
[
(δy − δx)

2
]
− (Bias [δy])

2
=

= E
[
(δy − δx)

2
]
− 4σ4

z .

(25)

Substituting equation 19 into 25, we get

var [δy] = E
[
(δy − δx)

2
]
− 4σ4

z =

= E
[
(2δx,z + δz)

2
]
− 4σ4

z =

= 4E
[
δ2x,z

]
+ 4E [δx,zδz] + E

[
δ2z
]
− 4σ4

z .

(26)

Since E
[
δ2x,z

]
≥ 0, the variance can be bounded from be-

low using the following inequality,

var [δy] ≥ 4E [δx,z] + E
[
δ2z
]
− 4σ4

z , (27)

where the bound is strict since provided d(x) = 0, we have

E
[
δ2x,z

]
= E


 1

n2

n∑
i,j=1

d
(x)
i,j d

(z)
i,j

2
 =

= E


 1

n2

n∑
i,j=1

0 · d(z)i,j

2
 = E [0] = 0 .

(28)



Next, we show that E [δx,zδz] = 0.

E [δx,zδz] =
1

n4
E

 n∑
i,j

d
(x)
i,j d

(z)
i,j

 n∑
i,j

(
d
(z)
i,j

)2 =

=
1

n4
E

 n∑
i1,j1,i2,j2

d
(x)
i1,j1

d
(z)
i1,j1

(
d
(z)
i2,j2

)2 =

=
1

n4

n∑
i1,j1,i2,j2

E
[
d
(x)
i1,j1

d
(z)
i1,j1

(
d
(z)
i2,j2

)2]
=

=
1

n4

n∑
i1,j1,i2,j2

d
(x)
i1,j1

E
[
d
(z)
i1,j1

(
d
(z)
i2,j2

)2]
=

=
1

n4

n∑
i1,j1,i2,j2

d
(x)
i1,j1

· 0 = 0 ,

(29)

where E
[
d
(z)
i1,j1

(
d
(z)
i2,j2

)2]
= 0 as it is the third moment of

multivariate Gaussian distribution. Substituting equation 29
into 27, we get

var
[
δ̂x

]
≥ E

[
δ2z
]
− 4σ4

z . (30)

It remains to calculate the value of E
[
δ2z
]
.

E
[
δ2z
]
= E [δzδz] =

=
1

n4
E

 n∑
i,j=1

(
d
(z)
i,j

)2 n∑
i,j=1

(
d
(z)
i,j

)2 =

=
1

n4
E

 n∑
i1,j1,i2,j2=1

(
d
(z)
i1,j1

)2 (
d
(z)
i2,j2

)2 =

=
1

n4

n∑
i1,j1,i2,j2=1

E

[(
d
(z)
i1,j1

)2 (
d
(z)
i2,j2

)2]
.

(31)

E
[(

d
(z)
i1,j1

)2 (
d
(z)
i2,j2

)2]
=

= E
[(

z
(1)
i1,j1

− z
(2)
ii,ji

)2 (
z
(1)
i2,j2

− z
(2)
i2,j2

)2]
=

= E
[((

z
(1)
i1,j1

)2
− 2z

(1)
i1,j1

z
(2)
i1,j1

+
(
z
(2)
i1,j1

)2)
×((

z
(1)
i2,j2

)2
− 2z

(1)
i2,j2

z
(2)
i2,j2

+
(
z
(2)
i2,j2

)2)]
=

= E
[(

z
(1)
i1,j1

)2 (
z
(1)
i2,j2

)2]
−

2E
[(

z
(1)
i1,j1

)2
z
(1)
i2,j2

z
(2)
i2,j2

]
+

E
[(

z
(1)
i1,j1

)2 (
z
(2)
i2,j2

)2]
−

2E
[
z
(1)
i1,j1

z
(2)
i1,j1

(
z
(1)
i2,j2

)2]
+

4E
[
z
(1)
i1,j1

z
(2)
i1,j1

z
(1)
i2,j2

z
(2)
i2,j2

]
−

2E
[
z
(1)
i1,j1

z
(2)
i1,j1

(
z
(2)
i2,j2

)2]
+

E
[(

z
(2)
i1,j1

)2 (
z
(1)
i2,j2

)2]
−

2E
[(

z
(2)
i1,j1

)2
z
(1)
i2,j2

z
(2)
i2,j2

]
+

E
[(

z
(2)
i1,j1

)2 (
z
(2)
i2,j2

)2]
.

(32)

All summands in equation 32 are the fourth moments of
multivariate Gaussian distribution. Using formula for the
Gaussian moment, we get

E
[(

z
(1)
i1,j1

)2 (
z
(1)
i2,j2

)2]
=

= σ4
z + 2 (RZZ(i1 − j1, i2 − j2))

2

(33)

2E
[(

z
(1)
i1,j1

)2
z
(1)
i2,j2

z
(2)
i2,j2

]
=

= 2E
[(

z
(1)
i1,j1

)2
z
(1)
i2,j2

]
E
[
z
(2)
i2,j2

]
= 0

(34)

E
[(

z
(1)
i1,j1

)2 (
z
(2)
i2,j2

)2]
=

= E
[(

z
(1)
i1,j1

)2]
E
[(

z
(2)
i2,j2

)2]
= σ4

z

(35)



2E
[
z
(1)
i1,j1

z
(2)
i1,j1

(
z
(1)
i2,j2

)2]
=

= 2E
[
z
(1)
i1,j1

(
z
(1)
i2,j2

)2]
E
[
z
(2)
i1,j1

]
= 0

(36)

4E
[
z
(1)
i1,j1

z
(2)
i1,j1

z
(1)
i2,j2

z
(2)
i2,j2

]
=

= 4E
[
z
(1)
i1,j1

z
(1)
i2,j2

]
E
[
z
(2)
i1,j1

z
(2)
i2,j2

]
=

= 4 (RZZ(i1 − j1, i2 − j2))
2

(37)

2E
[
z
(1)
i1,j1

z
(2)
i1,j1

(
z
(2)
i2,j2

)2]
=

= 2E
[
z
(1)
i1,j1

]
E
[
z
(2)
i1,j1

(
z
(2)
i2,j2

)2]
= 0

(38)

E
[(

z
(2)
i1,j1

)2 (
z
(1)
i2,j2

)2]
=

= E
[(

z
(2)
i1,j1

)2]
E
[(

z
(1)
i2,j2

)2]
= σ4

z

(39)

2E
[(

z
(2)
i1,j1

)2
z
(1)
i2,j2

z
(2)
i2,j2

]
=

= 2E
[(

z
(2)
i1,j1

)2
z
(2)
i2,j2

]
E
[
z
(1)
i2,j2

]
= 0

(40)

E
[(

z
(2)
i1,j1

)2 (
z
(2)
i2,j2

)2]
=

= σ4
z + 2 (RZZ(i1 − j1, i2 − j2))

2
.

(41)

Summarizing the expressions in equations 33-41, we get

E
[(

d
(z)
i1,j1

)2 (
d
(z)
i2,j2

)2]
=

σ4
z + 2 (RZZ(i1 − j1, i2 − j2))

2
+

σ4
z + 4 (RZZ(i1 − j1, i2 − j2))

2
+ σ4

z+

σ4
z + 2 (RZZ(i1 − j1, i2 − j2))

2
=

= 4σ4
z + 8 (RZZ(i1 − j1, i2 − j2))

2
.

(42)

Substituting equation 42 into 31, we get

E
[
δ2z
]
=

1

n4

n∑
i1,j1,i2,j2=1

E

[(
d
(z)
i1,j1

)2 (
d
(z)
i2,j2

)2]
=

=
1

n4

n∑
i1,j1,i2,j2=1

(
4σ4

z + 8 (RZZ(i1 − j1, i2 − j2))
2
)
=

= 4σ4
z +

8

n4

n∑
i1,j1,i2,j2=1

(RZZ(i1 − j1, i2 − j2))
2

(43)

Substituting equation 43 into 30, we have

var [δy] ≥ E
[
δ2z
]
− 4σ4

z =

=
8

n4

n∑
i1,j1,i2,j2=1

(RZZ (i1 − j1, i2 − j2))
2
=

=
8

n2
σ4
z

 1

n2

n∑
i1,j1,i2,j2=1

(
RZZ (i1 − j1, i2 − j2)

σ2
z

)2
 .

(44)

Finally, we get

var [δy] ≥
8

n2
σ4
zρ , (45)

where

ρ =
1

n2

n∑
i1,j1,i2,j2=1

(
RZZ (i1 − j1, i2 − j2)

σ2
z

)2

.

C.2. Proof of Proposition 9

Proof. Substituting equation 17 into ρ in Theorem 8, we get

ρ =
1

n2

n∑
i1,j1,i2,j2=1

(
RZZ (i1 − j1, i2 − j2)

σ2
z

)2

=

=
1

n2σ4
z

n∑
i1,j1,i2,j2=1

g2 (i1 − j1) g
2 (i2 − j2) =

=
1

n2σ4
z

n∑
i1,j1=1

g2 (i1 − j1)

n∑
i2,j2=1

g2 (i2 − j2) =

=
1

n2σ4
z

 n∑
i,j=1

g2 (i− j)

2

.

(46)

It is easy to see that if a ≥ b > 0, then for any τ ,

1− |τ |
a

≥ 1− |τ |
b

(47)

and

max

{
1− |τ |

a
, 0

}
≥ max

{
1− |τ |

b
, 0

}
. (48)

We denote r = min {⌊θ⌋, n}, where ⌊·⌋ stands for the
floor function. Applying Lemma 10 on equation 46, sub-
stituting the expression for g (τ) in equation 17, and using



inequalities 47 and 48, we get

ρ =
1

n2σ4
z

 n∑
i,j=1

g2 (i− j)

2

=

=
1

n2σ4
z

n

n−1∑
τ=−(n−1)

(
1− |τ |

n

)
g2 (τ)

2

=

=
1

σ4
z

 n−1∑
τ=−(n−1)

(
1− |τ |

n

)
×

(
σz ·max

{
1− |τ |

θ
, 0

})2
)2

≥

≥

 n−1∑
τ=−(n−1)

(
1− |τ |

n

)
×

(
max

{
1− |τ |

⌊θ⌋
, 0

})2
)2

=

=

 r−1∑
τ=−(r−1)

(
1− |τ |

n

)(
1− |τ |

⌊θ⌋

)2
2

≥

≥

 r−1∑
τ=−(r−1)

(
1− |τ |

r

)(
1− |τ |

r

)2
2

=

=

 r−1∑
τ=−(r−1)

(
1− |τ |

r

)3
2

=

=

(
1 + 2

r−1∑
τ=1

(
1− τ

r

)3)2

=

=

(
1 +

2

r3

r−1∑
τ=1

(r − τ)
3

)2

.

(49)

Applying variable change τ = r − τ and using the formula

for the sum of cubes, we get

ρ ≥

(
1 +

2

r3

r−1∑
τ=1

(r − τ)
3

)2

=

=

(
1 +

2

r3

r−1∑
τ=1

τ3

)2

=

=

(
1 +

2

r3
(r − 1)

2
r2

4

)2

=

=

(
1 +

(r − 1)
2

2r

)2

=

=

(
2r + r2 − 2r + 1

2r

)2

=

=
1

4

(
r +

1

r

)2

.

(50)

Lemma 10.

n∑
i,j=1

f (i− j) = n

n−1∑
τ=−(n−1)

(
1− |τ |

n

)
f (τ) .

Proof. We start by splitting the inner sum into two ranges,
1 ≤ j ≤ i and i ≤ j ≤ n

n∑
i,j=1

f (i− j) =

=

n∑
i=1

 i∑
j=1

f (i− j) +

n∑
j=i

f (i− j)− f (i− i)

 =

=

n∑
i=1

i∑
j=1

f (i− j) +

n∑
i=1

n∑
j=i

f (i− j)− nf (0) .

(51)

We calculate the first double sum. Substituting τ = i−j+1



and changing the order of the double summation, we have

n∑
i=1

i∑
j=1

f (i− j) =

n∑
i=1

i∑
τ=1

f (τ − 1) =

=
∑

1≤τ≤i≤n

f (τ − 1) =

=

n∑
τ=1

n∑
i=τ

f (τ − 1) =

=

n∑
τ=1

f (τ − 1)

n∑
i=τ

1 =

=

n∑
τ=1

f (τ − 1) (n− (τ − 1)) =

=

n−1∑
τ=0

(n− τ) f (τ) =

=

n−1∑
τ=0

(n− |τ |) f (τ) .

(52)

Substituting variable change t = n− j + 1, k = n− i+ 1
into the second double summation in equation 51, we get

n∑
i=1

n∑
j=i

f (i− j) =

n∑
k=1

k∑
t=1

f (t− k) =

=

n∑
k=1

k∑
t=1

g (k − t) ,

(53)

where g (τ) = f (−τ). Substituting equation 52 into 53,
we have

n∑
i=1

n∑
j=i

f (i− j) =

n−1∑
τ=0

(n− |τ |) g (τ) =

=

0∑
τ=−(n−1)

(n− |τ |) f (τ) .

(54)

Substituting equations 52 and 54 into equation 51 finalizes

σ = 5 σ = 10 σ = 15 σ = 20
k = 2 19 27 31 33
k = 3 19 37 41 43
k = 4 25 43 43 45

Table 1. Patch size n for correlated Gaussian experiments.

ISO 1600 3200 6400 12800 25600
n 15 25 27 35 37

Table 2. Patch size n for experiments with real-world noise.

the proof

n∑
i,j=1

f (i− j) =

=

n∑
i=1

i∑
j=1

f (i− j) +

n∑
i=1

n∑
j=i

f (i− j)− nf (0)

=

n−1∑
τ=0

(n− |τ |) f (τ)+

0∑
τ=−(n−1)

(n− |τ |) f (τ)− nf (0) =

=

n−1∑
τ=−(n−1)

(n− |τ |) f (τ) .

(55)

D. Training Details

In all experiments, we train the denoisers for 30 epochs
using the Adam [3] optimizer while decreasing the learning
rate by 0.5 every 5 epochs. The initial learning rate is 0.001
for the correlated Gaussian experiment and 0.00001 for the
experinet with real-world noise. During the training, we ex-
tract random patches of size 50× 50 from the training data
and use a batch size of 32 for correlated Gaussian denois-
ing and 128 for the experiment with real-world noise. The
values of n used in the patch search are summarized in ta-
bles 1 and 2. Examples of CRVD sequences are presented
in figure 1.

E. Additional Results

This section provides additional visual comparisons
of our framework versus leading competitors. Fig-
ures 2, 3, and 4 show denoising examples from the cor-
related Gaussian experiments, while figures 5, 6, and 7
present real-world denoising examples.



(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

(g) Frame 7 (h) Frame 1 (i) Frame 2

(j) Frame 3 (k) Frame 4 (l) Frame 5

(m) Frame 6 (n) Frame 7

Figure 1. Examples of CRVD sequences. Figures 1a to 1g present
sequence 5, while figures 1h to 1n shown sequence 7.
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(a) Noisy
28.12 / 0.522

(b) N2N
28.70 / 0.555

(c) B2U
24.27 / 0.335

(d) BM3D
31.41 / 0.726

(e) B-DnCNN
30.55 / 0.677

(f) R2R
34.05 / 0.836

(g) BM3D-O
36.37 / 0.939

(h) PC-UNet
38.65 / 0.965

(i) PC-DnCNN
39.02 / 0.968

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
28.11 / 0.596

(v) N2N
28.52 / 0.620

(w) B2U
24.09 / 0.363

(x) BM3D
30.26 / 0.725

(y) B-DnCNN
29.48 / 0.686

(z) R2R
31.83 / 0.781

(aa) BM3D-O
33.84 / 0.876

(ab) PC-UNet
36.26 / 0.934

(ac) PC-DnCNN
36.42 / 0.936

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 2. Denoising examples with correlated Gaussian noise. The first four rows show frame 13 of the sequence planes-crossing with
σ = 10 and k = 3. The last four rows present frame 5 of the sequence helicopter with σ = 10 and k = 4. As can be seen, oracle
BM3D leaves a substantial amount of low-frequency noise unfiltered, while other algorithms, except ours (PC-UNet and PC-DnCNN), do
not succeed in removing the noise.



(a) Noisy
24.60 / 0.710

(b) N2N
25.00 / 0.725

(c) B2U
21.59 / 0.531

(d) BM3D
26.07 / 0.757

(e) B-DnCNN
25.73 / 0.762

(f) R2R
26.69 / 0.756

(g) BM3D-O
25.85 / 0.703

(h) PC-UNet
29.30 / 0.877

(i) PC-DnCNN
29.29 / 0.881

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
22.10 / 0.543

(v) N2N
22.73 / 0.569

(w) B2U
21.98 / 0.482

(x) BM3D
23.82 / 0.582

(y) B-DnCNN
23.36 / 0.608

(z) R2R
24.64 / 0.562

(aa) BM3D-O
25.44 / 0.583

(ab) PC-UNet
29.26 / 0.842

(ac) PC-DnCNN
29.37 / 0.844

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 3. Denoising examples with correlated Gaussian noise. The first four rows show frame 5 of the sequence carousel with σ = 15 and
k = 4. The last four rows present frame 13 of the sequence golf with σ = 20 and k = 4. As can be seen, oracle BM3D produces blurred
images while leaving a substantial amount of low-frequency noise unfiltered. Other algorithms, except ours (PC-UNet and PC-DnCNN),
do not succeed in removing the noise.



(a) Noisy
24.59 / 0.611

(b) N2N
25.22 / 0.635

(c) B2U
24.35 / 0.599

(d) BM3D
27.28 / 0.738

(e) B-DnCNN
26.79 / 0.713

(f) R2R
28.86 / 0.807

(g) BM3D-O
29.52 / 0.884

(h) PC-UNet
31.21 / 0.923

(i) PC-DnCNN
31.45 / 0.926

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
34.16 / 0.796

(v) N2N
34.54 / 0.813

(w) B2U
31.79 / 0.674

(x) BM3D
36.21 / 0.876

(y) B-DnCNN
35.50 / 0.852

(z) R2R
37.60 / 0.910

(aa) BM3D-O
39.10 / 0.944

(ab) PC-UNet
40.93 / 0.964

(ac) PC-DnCNN
41.10 / 0.965

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 4. Denoising examples with correlated Gaussian noise. The first four rows show frame 24 of the sequence chameleon with σ = 15
and k = 3. The last four rows present frame 5 of the sequence people-sunset with σ = 5 and k = 4. As can be seen, oracle BM3D leaves
a substantial amount of low-frequency noise unfiltered, while other algorithms, except ours (PC-UNet and PC-DnCNN), do not succeed in
removing the noise.



(a) Noisy
25.01 / 0.442

(b) N2N
25.09 / 0.449

(c) B2U
20.34 / 0.281

(d) BM3D
26.21 / 0.550

(e) B-DnCNN
25.08 / 0.446

(f) R2R
27.38 / 0.645

(g) BM3D-O
30.71 / 0.902

(h) PC-UNet
32.05 / 0.933

(i) PC-DnCNN
32.00 / 0.932

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
25.91 / 0.464

(v) N2N
26.00 / 0.471

(w) B2U
19.61 / 0.283

(x) BM3D
27.39 / 0.603

(y) B-DnCNN
25.98 / 0.469

(z) R2R
28.64 / 0.702

(aa) BM3D-O
32.27 / 0.938

(ab) PC-UNet
33.66 / 0.958

(ac) PC-DnCNN
33.50 / 0.957

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 5. Denoising examples with real-world noise. The first four rows show frame 6 of scene 9. The last four rows present frame 4 of
scene 2. Both images are captured with ISO 25600. As can be seen, oracle BM3D leaves a substantial amount of low-frequency noise
unfiltered, while other algorithms, except ours (PC-UNet and PC-DnCNN), do not succeed in removing the noise.



(a) Noisy
28.29 / 0.651

(b) N2N
28.37 / 0.657

(c) B2U
23.96 / 0.446

(d) BM3D
29.30 / 0.725

(e) B-DnCNN
28.36 / 0.655

(f) R2R
30.43 / 0.788

(g) BM3D-O
33.40 / 0.933

(h) PC-UNet
33.99 / 0.946

(i) PC-DnCNN
34.37 / 0.948

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
27.99 / 0.589

(v) N2N
28.05 / 0.594

(w) B2U
24.46 / 0.403

(x) BM3D
29.03 / 0.678

(y) B-DnCNN
28.07 / 0.593

(z) R2R
30.27 / 0.762

(aa) BM3D-O
33.52 / 0.937

(ab) PC-UNet
34.97 / 0.959

(ac) PC-DnCNN
34.90 / 0.956

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 6. Denoising examples with real-world noise. The first four rows show frame 3 of scene 6. The last four rows present frame 6 of
scene 11. Both images are captured with ISO 12800. As can be seen, oracle BM3D leaves a substantial amount of low-frequency noise
unfiltered, while other algorithms, except ours (PC-UNet and PC-DnCNN), do not succeed in removing the noise.



(a) Noisy
32.88 / 0.864

(b) N2N
32.96 / 0.866

(c) B2U
4.36 / -0.001

(d) BM3D
33.68 / 0.894

(e) B-DnCNN
32.95 / 0.866

(f) R2R
34.65 / 0.921

(g) BM3D-O
34.59 / 0.925

(h) PC-UNet
35.82 / 0.948

(i) PC-DnCNN
35.80 / 0.947

(j) Clean

(k) Noisy (l) N2N (m) B2U (n) BM3D (o) B-DnCNN

(p) R2R (q) BM3D-O (r) PC-UNet (s) PC-DnCNN (t) Clean

(u) Noisy
35.56 / 0.886

(v) N2N
35.54 / 0.886

(w) B2U
4.66 / 0.012

(x) BM3D
36.57 / 0.916

(y) B-DnCNN
35.67 / 0.888

(z) R2R
37.65 / 0.941

(aa) BM3D-O
39.17 / 0.966

(ab) PC-UNet
40.14 / 0.976

(ac) PC-DnCNN
40.16 / 0.976

(ad) Clean

(ae) Noisy (af) N2N (ag) B2U (ah) BM3D (ai) B-DnCNN

(aj) R2R (ak) BM3D-O (al) PC-UNet (am) PC-DnCNN (an) Clean

Figure 7. Denoising examples with real-world noise. The first four rows show frame 6 of scene 2 captured with ISO 6400. The last four
rows present frame 5 of scene 1 taken with ISO 3200. As can be seen, oracle BM3D leaves a noticeable amount of low-frequency noise
unfiltered, while other algorithms, except ours (PC-Unet and PC-DnCNN), do not succeed in removing the noise.
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