
Tracking through Containers and Occluders in the Wild

Supplementary Material

A. Dataset Details
For our training set Kubric Random, all scenes are gener-

ated based on the MOVi-F1 template code [8], but with sev-
eral modifications. Backgrounds are chosen randomly from
the Polyhaven HDRI collection [11], and all objects origi-
nate from Google Scanned Objects (GSO) [7]. Every scene
spawns s static objects lying on the ground, and d dynamic
objects falling down when the video starts. s is uniformly
randomly chosen between 4 and 24 (inclusive), while d is
uniformly randomly chosen between 2 and 12 (inclusive).

In order to increase the frequency of containment, we
manually scan the GSO library to designate 114 out of 1,032
GSO assets as containers, which can be either deep or shal-
low. For each scene, at least three out of the s static objects
must be containers, and while object sizes are chosen ran-
domly, we also make containers slightly bigger on average.
An assortment of examples is shown in Figure 1.

The most time-consuming part of the simulation
is generating the X-ray segmentation mask ma ∈
[0, 1]T×H×W×K , which is used for supervision as it ex-
poses all pixels of all K instances separately over time, re-
gardless of occlusion. This is done by running the PyBullet
physics simulation [5] once, thus letting the object inter-
actions develop over time within the dynamic scene, then
rendering the input video via Blender [3] with all instances
present, following [8]. Next, we isolate each object by turn-
ing off the visibility of all other objects (they are essentially
temporarily removed from existence), and rendering those
videos again separately to iteratively produce one channel
of ma at a time.

Finally, even though the frame rate of video clips in the
Rubric benchmark is variable (i.e. between 4 and 30), ren-
dering of all Kubric simulations happens at a single fixed
value of 12 FPS.

To construct the Kubric Random dataset, consisting of
4,000 videos of 36 frames each with spatial dimension
480 × 360 along with RGB information, depth maps, and
segmentation maps (mv and ma), 256 AMD EPYC 7763
CPU cores worked for 30 days.

A.1. Mass Estimation

Mass plays an important role in determining the outcome
of object dynamics and interactions. While GSO provides
a diverse collection of high-quality scanned 3D models for
household items, physical properties such as mass and fric-
tion were not captured for many objects [7]. In Kubric

1This is the same as MOVi-E, but with a small degree of motion blur
added to the video recorded by the virtual camera.

Figure 1. Containers in GSO. We mark roughly 11% of the as-
sets in Google Scanned Objects [7] to be containers, which are
spawned more often than average compared to other object types
in Kubric Random.

MOVi-F, a constant density assumption is therefore made by
default to estimate mass from volume [8]. In an attempt to
increase the realism of our training data, we leverage GPT-
3 [4] to produce rough estimates of the mass of every object
in the GSO library based on its description and metadata.
This is illustrated in Figure 2. In practice, we calculate
and apply the geometric mean of the original and LLM-
estimated mass, because the numbers provided by GPT-3
are, qualitative speaking, not always very accurate.

B. Network Implementation Details
B.1. AOT

Since AOT is designed for VOS, we keep the entire
pipeline of the AOT model intact for fairness. Follow-
ing [10], at training time, a context window of 5 frames
is fed into the model for a single training step, while at test
time, the target object mask is propagated throughout the
entire video clip from start to end.

B.2. TCOW

TCOW is a modification of the TimeSFormer network,
which operates by processing a number of chunks of space-
time patches into a transformer [1, 9]. Specifically, we con-
catenate the input video and the query mask along the chan-
nel axis to form (x,mq) ∈ RT×H×W×4 (here, mq,t = 0
for all t ≥ 1 as only the first frame is labeled). Similarly
to Vision Transformer [6], the resulting set of frames is de-
composed into N = T ×h×w small image patches of size
16× 16× 4 each, with h = H

16 , w = W
16 . After a per-patch

linear projection, an input sequence of N embeddings of di-
mensionality 768 is fed into a transformer, where we subse-

1



Figure 2. Estimating mass for objects used in Kubric simulations. We perform text completion with a large language model. Specif-
ically, we query OpenAI GPT-3 (text-davinci-002) [4] twice for mass, twice for weight, and average the four numerical outputs after
appropriate unit conversions. The image is shown for visualization only, and is not fed to the language model. The underlined text repre-
sents the four actual completion outputs made by GPT-3. The italic parts of the input are derived from the available metadata of each asset,
and this procedure is repeated for all 1,032 GSO objects.

Figure 3. TCOW architecture. We apply the standard TimeSFormer backbone onto the input video (x,mq) following a spacetime
divided attention scheme [1], but interpret the tokens after the transformer as patches for the predicted output masks. (Multiple channels
belonging to the same patch are shown in separate tiles for clarity.)

quently apply repeated multi-head self-attention blocks on
these tokens.

The output sequence is treated as a spatiotemporal fea-
ture map for the purpose of dense video segmentation.
Each element after the last attention layer is linearly pro-
jected back to image space, resulting in a set of patches
of 16 × 16 × 3, where the last dimension represents the
predicted triplet of masks (m̂t, m̂o, m̂c). The vectors are
composed in the same order as they were decomposed at the
input side. The classification token is ignored and there is
no pooling. A diagram is shown in Figure 3.

B.3. Learning and Supervision

We train the TCOW model for tracking objects through
occlusion and containment by producing segmentation
masks for each type. The network f (as defined in Equa-
tion 1 in the main text) accepts a single query instance
at a time, which makes a binary cross-entropy objective
LBCE between every output channel m̂ and its correspond-
ing ground truth m a logical starting point.

Since the number of frames where the target is occluded

is typically smaller than the number of frames where the
target is visible in our training set, we scale LBCE by a
factor 1+(β−1)o, where o ∈ [0, 1] is the occlusion fraction.

However, inspired by [10], we also combine LBCE

with two additional loss terms: (1) a bootstrapped variant
LBCE,k that focuses on a certain top fraction k of pixels in
each example that incur the highest individual contributions
to the loss LBCE , and (2) a soft Jaccard loss LJ [2]. The
terms are linearly combined and weighted as follows:

Lm = (λ1LBCE + λ2LBCE,k + λ3LJ )(m̂,m) (1)

Finally, the total objective is a weighted sum over the three
different output types predicted by f :

L = λtLmt
+ λoLmo

+ λcLmc
(2)

where Lmt
addresses the target instance mask, Lmo

is for
the main occluder mask, and Lmc is for the main container
mask. The ground truth masks for the latter two (mo and
mc) are defined to be all-zero whenever there exists no oc-
cluder or container respectively, although for class balanc-

2



Figure 4. Success cases for TCOW on Rubric. All visualized predictions are made by the non-ablated TCOW network. This model
performs particularly well on relatively simple cases of (total) occlusion and/or containment in the real world, despite being trained on
synthetic data only. Some video clips with containers moving to a limited degree are also handled correctly (see middle center, or top
right). However, more advanced examples of object permanence often result in failures, shown in Figure 5, demonstrating that a lot of
room for improvement remains.

ing purposes, the loss is also weighted with a factor α < 1
for those frames.

Augmentations during training consist of random color
jittering (hue, saturation, brightness), random grayscale,
random video reversal, random palindromes (i.e. playing
clips forward and then backward, or vice versa), random
horizontal flipping, and random cropping. We do not apply
any augmentations at test time.

In Kubric Random, there are many possible objects with
available annotations to track. At training time, we as-
sign a difficulty score to every instance (that is visible in
the first frame) based on its average occlusion fraction and
how much motion it experiences over time. The query is
then sampled randomly but non-uniformly, with preference
given to the harder to track target objects. At test time, we
measure and average metrics over the top four instances
with the highest difficulty score per video. Other datasets
(i.e. Kubric Containers plus all of Rubric) only have one
designated target object per video clip.

In our experiments, we set (T,H,W ) = (30, 240, 320),
β = 5, (λ1, λ2, λ3) = (0.2, 0.4, 0.4), (λt, λo, λc) =
(1.0, 0.5, 0.5), and α = 0.02. The bootstrap fraction k is
a function of time, and decreases linearly from 1 to 0.15
during the first 10% of training. We use the AdamW op-
timizer and train for 70 epochs, which takes 3 days on
2 NVIDIA RTX A6000 GPUs. Inference (without gradi-
ents) happens in 0.27 seconds for a single clip, which cor-
responds to roughly 110 FPS.

C. More Qualitative Results

Please see Figures 4, 5, and 6, as well as
tcow.cs.columbia.edu for videos along with explanations.
We recommend viewing the project webpage in a modern
browser.

References
[1] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is

space-time attention all you need for video understanding?
In ICML, 2021. 1, 2

[2] Jeroen Bertels, Tom Eelbode, Maxim Berman, Dirk Van-
dermeulen, Frederik Maes, Raf Bisschops, and Matthew B
Blaschko. Optimizing the dice score and jaccard index
for medical image segmentation: Theory and practice.
In International conference on medical image computing
and computer-assisted intervention, pages 92–100. Springer,
2019. 2

[3] Blender Online Community. Blender - a 3d modelling and
rendering package, 2021. 1

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1, 2

[5] Erwin Coumans and Yunfei Bai. Pybullet, a python mod-
ule for physics simulation for games, robotics and machine
learning. 2016. 1

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

3

https://tcow.cs.columbia.edu/


Figure 5. Failure cases for TCOW on Rubric. All visualized predictions are made by the non-ablated TCOW network. Multiple trends
could be discerned among real-world scenarios where the model fails, which can roughly be summarized as: (1) identical containers, one
of which is holding the target object, being shuffled around; (2) nested containment, e.g. when a mug is placed inside a larger box; (3) the
occluder and occludee are visually very similar, e.g. people occluding people or animals occluding animals. By releasing this challenging
benchmark to the community, we hope future work will be able to address these cases more successfully.

Figure 6. Qualitative results for AOT on Rubric. All visualized predictions are made by the non-ablated AOT network, and mirror
Figure 6 in the main text. Although all models are trained on Kubric data with X-ray supervision, AOT often loses track as soon as total
occlusion happens, and tends to jump to different instances or moving parts of the video (such as hands).

4



Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[7] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. arXiv
preprint arXiv:2204.11918, 2022. 1

[8] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A
scalable dataset generator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3749–3761, 2022. 1

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1

[10] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
jects with transformers for video object segmentation. Ad-
vances in Neural Information Processing Systems, 34:2491–
2502, 2021. 1, 2

[11] Greg Zaal, Rob Tuytel, Rico Cilliers, James Ray Cock, An-
dreas Mischok, Sergej Majboroda, Dimitrios Savva, and
Jurita Burger. Polyhaven: a curated public asset library
for visual effects artists and game designers. https://
polyhaven.com/hdris, 2021. 1

5

https://polyhaven.com/hdris
https://polyhaven.com/hdris

	. Dataset Details
	. Mass Estimation

	. Network Implementation Details
	. AOT
	. TCOW
	. Learning and Supervision

	. More Qualitative Results

