
CUF: Continuous Upsampling Filters

Supplementary Material

A. Experiment details

Training Hyper-parameters. Table 8 contains the hyper-

parameters used for training the ablated models, taken from

their single-scale (Sub-Pixel Conv.) training settings. All

models are trained for 1K epochs with L1 loss and ADAM

optimizer by setting β1 = 0.9, β2 = 0.999, and ǫ = 1e−8.

We use a step-wise learning rate schedule that is halved at

epochs [500, 800, 900, 950]. Unless referred as single-scale,

models were trained with random scales by sampling the

scale factor uniformly within the continuous interval [1, 4].
In order to ensure that the dimensions within the training

mini-batch match despite heterogeneous scale factors, we

first scale each image as required and then apply the same

crop size to both LR and HR images, such that the HR ran-

dom crop contains 1/s2 of the content of the LR crop, and

fix the relative grid coordinates to point to the random sub-

region.

CUF’s hyper parameters. Table 9 describes the num-

ber of neurons used in the presented ablations across dif-

ferent encoders. Ce was chosen to replicate the original

number of output features of each encoder. CUF’s hyper-

parameters were obtained by grid search on the EDSR-

baseline and Set5 dataset and replicated on the remaining

encoders. CUF’s positional encoding hyper-parameters en-

force a small number of basis per input parameter. For

each input (represented in 2D space), the number of ba-

sis N2 was searched within the set {0, 12, 22, ..., 52} while

fmax within the set {0, 0.5, ..., 4.0} for Π(δs(x)) and Π(s),

Encoder Batch Crop Initial LR

EDSR-baseline [21] 16 48 1e−4

RDN [40] 16 48 1e−4

SWINIR [20] 32 48 2e−4

SWINIR-lightweight [20] 64 64 2e−4

ABPN [10] 16 64 1e−3

Table 8. Training hyper-parameters: replicate each encoder’s

original setting.

Encoder Ce Ch Params(K)

EDSR-baseline 64 32 10

RDN

SWINIR

SWINIR-lightweight 60 32 10

ABPN (k as input) 28 28 5

ABPN (k as output) 11

Table 9. CUF’s hyper-parameters: Ce chosen as each the en-

coder output features.

and within the set {0, 0.5, .., 3.0} for Π(k). The final posi-

tional encoding hyper-parameters adopted are Π(δs(x); ) :
{N2 = 25; fmax = 2.0}, Π(s) : {N2 = 25; fmax = 2.0}
and Π(k) : {N2 = 9; fmax = 1.0}.

B. On the use of ensemble

Multi-scale up-sampling methods - DIV2k

Encoder Upsampler Ens. seen scales unseen scales

× 2 × 3 × 4 × 6 × 12

EDSR-baseline [21] Sub-pixel conv. 34.69 30.94 28.97 – –

LIIF 34.63 30.95 28.97 26.72 23.66

LTE 34.63 30.99 29.01 26.77 23.74

CUF (ours) 34.70 30.99 29.01 26.76 23.73

Sub-pixel conv. +geo 34.78 31.03 29.06 – –

LIIF +geo 34.74 31.05 29.07 26.80 23.76

LTE +geo 34.72 31.07 29.08 26.83 23.79

CUF (ours) +geo 34.79 31.07 29.09 26.82 23.78

Table 10. Disentangling the effect of ensembling on opti-

mization: Models trained under same supervision (no ensemble),

and tested with (marked with +geo) and without geometric self-

ensemble. Results on DIV2K’s validation subset [25].

The baseline settings from LIIF [6] and LTE [19] include

locally ensembling pixels around the target sub-pixel, by

shifting by its position by half pixel in the low resolution

grid, and averaging their results. This procedure introduces

a training and inference overhead, as the sampled points

is increased by a factor of four. As a direct consequence,

during training models adopting local self-ensemble eval-

uate four times more gradients per optimization step. In

order to disentangle possible optimization side effects, in

this section we ablate the models LIIF and LTE under same

optimization conditions as other models, that is, no ensem-

ble is adopted during training, but on inference time only.

LTE presents a strong result on scales 3 and larger, but a

reduction in performance on scale 2, in which LIIF matches

or surpass its performance. Overall, this ablation confirms

the benefits from CUF as the lighter arbitrary scale upsam-

pler with strong performance under single pass and self-

ensemble settings, across both smaller and larger scales.

C. On the use of positional encoding

Figure 11 contains a comparison of CUF models trained

using the neural-fields parameters as raw values versus the

projection using positional encoding. The stronger impact

of using positional encoding is observed on ABPN encoder

(Figure 12) and Urban-100 dataset [17]. We note that the

content of this dataset is characterized by sharp straight

lines and geometric structures, thus the quantitative gain is

aligned with the expected behaviour.





expansion convolution alone. Thus, the total operations per-

formed by CUF-instantiated is smaller that those performed

by Sub-Pixel Convolution whenever k2 + Cin + Cout <
k2 ∗ Cout.

In practice, the depthwise-pointwise decomposition

adopted by CUF-instantiated faces a memory drawback of

storing an extra feature map created in-between the decom-

position layers Cin (Figure 1). The reduction of such draw-

back with fused-convolutions is left as future work [1].

F. Qualitative comparisons

The difference between existent arbitrary-scale up-

samplers can only be observed at textured regions of the

image. In this section we disentangle the rule of the en-

coder and upsampler in the perceived quality of the results.

Figure 16 contain additional results, with non-integer scale

factors.






