CUF: Continuous Upsampling Filters

Supplementary Material

A. Experiment details

Training Hyper-parameters. Table 8 contains the hyper-
parameters used for training the ablated models, taken from
their single-scale (Sub-Pixel Conv.) training settings. All
models are trained for 1K epochs with £; loss and ADAM
optimizer by setting 81 = 0.9, 82 = 0.999, and € = le~8.
We use a step-wise learning rate schedule that is halved at
epochs [500, 800, 900, 950]. Unless referred as single-scale,
models were trained with random scales by sampling the
scale factor uniformly within the continuous interval [1, 4].
In order to ensure that the dimensions within the training
mini-batch match despite heterogeneous scale factors, we
first scale each image as required and then apply the same
crop size to both LR and HR images, such that the HR ran-
dom crop contains 1/s% of the content of the LR crop, and
fix the relative grid coordinates to point to the random sub-
region.

CUF’s hyper parameters. Table 9 describes the num-
ber of neurons used in the presented ablations across dif-
ferent encoders. C, was chosen to replicate the original
number of output features of each encoder. CUF’s hyper-
parameters were obtained by grid search on the EDSR-
baseline and SetS dataset and replicated on the remaining
encoders. CUF’s positional encoding hyper-parameters en-
force a small number of basis per input parameter. For
each input (represented in 2D space), the number of ba-
sis N2 was searched within the set {0,12,22, ..., 52} while
fmax Within the set {0, 0.5, ...,4.0} for II(§*(x)) and II(s),

Encoder Batch Crop Initial LR
EDSR-baseline [21] 16 48 le~t
RDN [40] 16 48 le—*
SWINIR [20] 32 48 2¢~4
SWINIR-lightweight [20] 64 64 2¢~4
ABPN [10] 16 64 le™3

Table 8. Training hyper-parameters: replicate each encoder’s
original setting.

Encoder C., C}y Params(K)
EDSR-baseline 64 32 10
RDN

SWINIR

SWINIR-lightweight 60 32 10
ABPN (k as input) 28 28 5
ABPN (k as output) 11

Table 9. CUF’s hyper-parameters: C. chosen as each the en-
coder output features.

and within the set {0, 0.5, .., 3.0} for II(k). The final posi-
tional encoding hyper-parameters adopted are I1(6°(x);) :
{N? = 25; fax = 2.0}, TI(s) : {N? = 25 frax = 2.0}
and TI(k) : {N? = 9; fuax = 1.0}

B. On the use of ensemble

Multi-scale up-sampling methods - DIV2k

Encoder Upsampler Ens. seen scales unseen scales
x2 x3 x4 x6 x 12
EDSR-baseline [21] ~ Sub-pixel conv. 34.69 | 30.94 ‘ 28.97 - -
LIIF 34.63 | 30.95 ‘ 28.97 | 26.72 | 23.66
LTE 34.63 | 30.99 29.01 | 26.77 | 23.74
CUF (ours) 3470 | 30.99 29.01 | 26.76 | 23.73
Sub-pixel conv. +ge || 34.78 | 31.03 | 29.06 - -
LIIF +geo || 34.74 | 31.05 | 29.07 | 26.80 | 23.76
LTE +geo || 34.72 | 31.07 29.08 | 26.83 | 23.79
CUF (ours) +eeo || 3479 | 31.07 29.09 | 26.82 | 23.78

Table 10. Disentangling the effect of ensembling on opti-
mization: Models trained under same supervision (no ensemble),
and tested with (marked with +4¢,) and without geometric self-
ensemble. Results on DIV2K’s validation subset [25].

The baseline settings from LIIF [6] and LTE [19] include
locally ensembling pixels around the target sub-pixel, by
shifting by its position by half pixel in the low resolution
grid, and averaging their results. This procedure introduces
a training and inference overhead, as the sampled points
is increased by a factor of four. As a direct consequence,
during training models adopting local self-ensemble eval-
uate four times more gradients per optimization step. In
order to disentangle possible optimization side effects, in
this section we ablate the models LIIF and LTE under same
optimization conditions as other models, that is, no ensem-
ble is adopted during training, but on inference time only.
LTE presents a strong result on scales 3 and larger, but a
reduction in performance on scale 2, in which LIIF matches
or surpass its performance. Overall, this ablation confirms
the benefits from CUF as the lighter arbitrary scale upsam-
pler with strong performance under single pass and self-
ensemble settings, across both smaller and larger scales.

C. On the use of positional encoding

Figure 11 contains a comparison of CUF models trained
using the neural-fields parameters as raw values versus the
projection using positional encoding. The stronger impact
of using positional encoding is observed on ABPN encoder
(Figure 12) and Urban-100 dataset [17]. We note that the
content of this dataset is characterized by sharp straight
lines and geometric structures, thus the quantitative gain is
aligned with the expected behaviour.

ABPN

EDSR-baseline

RDN

SWINIR

== positional encoding

set5 2x M LS L | b | . raw parameters
Set5 3x ,!—, H | -[
Setsax P 'u =] b
Setl4 2x |lum LS - .
Set143x M o i %
set1a4x M E B | ™
B1o02x M L) | 5
B1003x M L L L§
Bl004x M] B
Urban100 2x ML L] | -
Urban100 3x [[8 -
Urban100 4x ML | -

0.20

Relative PSNR

0.20
Relative PSNR

0.20
Relative PSNR

0.20

Relative PSNR

Figure 11. Impact of CUF’s positional encoding on different
datasets and encoders. Bar plots represent PSNR differences rel-
ative to baseline models adopting sub-pixel convolutions and cor-
responding encoder.

w/o. pos. enc.

with. pos. enc.

LR crop w/o. pos enc with. pos enc GT (x 3)
Figure 12. Qualitative evaluation on mobile-compatible en-
coder — ABPN-CUF with and without positional encoding. But-

terfly image from Set5 dataset.

D. Conditioning on the kernel indexes

Figure 13 contains a comparison between representing
the kernel indexes k;, k; as input parameters to the neural-
fields versus representing their discrete set as individual
neurons at the output of the hyper-network. On the effi-
ciency side, setting them as the hyper-network output neu-
rons reduces memory and computation used, as hidden lay-
ers are shared. On the other hand, the layers of the hyper-
network and its nonlinearities provide additional expres-
siveness compared to the linear transformation used in the
multi-headed version. This additional expressiveness re-
sults in in performance improvement in stronger encoders
(RDN, SWINIR), but not on smaller ones (ABPN, EDSR).
Thus, we recommend conditioning on kernel indexes only
for those encoders that take advantage of it.

ABPN EDSR-baseline RDN

Sets 2x . L 1 - cout
Set5 3x % !?, 1
Sets 4x EEEE——— | -
Set14 2x [k —
Set143x L =]
Set14 4x - ||
B100 2x [| %
B100 3x [, r i
B100 4x [B L
Urban100 2x — m -—
Urban100 3x [G— = | =
Urban100 4x [- | .

0.20
Relative PSNR Relative PSNR Relative PSNR Relative PSNR
Figure 13. Comparison between conditioning the neural-fields
on the kernel indexes (k;, k;) versus its discretization at the
hyper-network output layer. Stronger encoders take advantage
of the hyper-network depth and non linearities. Bar plots represent
PSNR differences relative to baseline models adopting sub-pixel

convolutions and corresponding encoder.

E. Sub-Pixel Convolution vs. CUF-instantiated

In this section we compare the costs associated with Sub-
Pixel Convolution and CUF-instantiated upsampling heads.
The presented comparison contrasts their designs choices
based on full convolution (Sub-Pixel Convolution) versus
depthwise-pointwise decomposition (CUF). As unitary el-
ement of comparison we evaluate the number of multipli-
cations performed to produce a single output pixel. We as-
sume an input feature map with C;,, channels, the resulting
image with C,,,; channels and that both Sub-Pixel Convo-
lution and CUF-instantiated adopt filters of same size K.

CUF-instantiated architecture is composed with a depth-
wise convolution and pointwise projections. Its three layers
perform respectively Ci,, * k2, Cjp # Cyyy and Cyyy * Coyy
multiplications per output pixel.

Next, we cover two common compositions with Sub-
Pixel Convolution. The most common design for upsam-
pler heads targeting high quality results is to combine a
Sub-Pixel Convolution layer with a pointwise layer pro-
jecting from Cj,, into RGB channels (C',¢) ([20,21,40]).
In this setting, both Sub-Pixel Conv. and CUF-instantiated
have identical output layers, that is removed from our anal-
ysis. The number of multiplications performed by the
Sub-Pixel Convolution layer alone per target subpixel is:
Cin * kx k * Cy,. Thus, the fraction of multiplications per-
formed by CUF-instantiated in relation to Sub-Pixel Convo-

: k2 +C;y 1 1 ;
lution can be expressed as: 7,5 = &+ jz. Thatis, the
decomposition has the desired effect of saving computation

whenever C;,, k > 1.

An alternative use of a Sub-Pixel Convolution layer is its
direct use as output layer. In this case, the three layers that
compose CUF’s upsampling head are compared to the full

expansion convolution alone. Thus, the total operations per-
formed by CUF-instantiated is smaller that those performed
by Sub-Pixel Convolution whenever k% + Cyy, + Couy <
k2 * Cout'

In practice, the depthwise-pointwise decomposition
adopted by CUF-instantiated faces a memory drawback of
storing an extra feature map created in-between the decom-
position layers C},, (Figure 1). The reduction of such draw-
back with fused-convolutions is left as future work [1].

F. Qualitative comparisons

The difference between existent arbitrary-scale up-
samplers can only be observed at textured regions of the
image. In this section we disentangle the rule of the en-
coder and upsampler in the perceived quality of the results.
Figure 16 contain additional results, with non-integer scale
factors.

DIV2K #0876 _ DIV2K #826

RDN

SWINTIR

CUF (ours)

g / P Pt O e "
gl e s P ".u-z. pog pio pf pog padssdy foof pod poid pod

poof pogpoodpogrigr el L TR TR pod pegpodps
o o s

SWINTIR

K LR

SWINTIR

Figure 14. Qualitative comparisons of arbitrary-scale super resolution methods using different encoders. Scale factor 4 x

Urban-100 #004) Urban-100 #004

CUF (ours)

P
[a)
o

SWINTIR
SWINTIR

Figure 15. Hard cases: Aliasing artifacts observed on hard cases. Our upsampler produces the sharper results. Scale factor 8

x4 X 4.5

Figure 16. Qualitative results using non-integer scales. Images from Set14 dataset.

