
Supplementary Material –
MobileOne: An Improved One millisecond Mobile Backbone

Pavan Kumar Anasosalu Vasu James Gabriel Jeff Zhu Oncel Tuzel Anurag Ranjan

Apple

A. Figures
Figure 1 from the main paper has been enlarged in Fig-

ures 1, 2, 3.

B. Benchmarking
We treat MobileNetV3 [5] in a special way since their H-

swish operator is optimized for certain hardware platforms
and not for others. Howard et al. [5] show that H-swish can
obtain similar performance as ReLU when platform specific
optimizations are applied. Therefore, while benchmarking
for latency, we replace the H-swish layers with ReLU layers
and then report the latency of MobileNetV3.

B.1. Additional Benchmarks

We have shown the efficiency of our model with com-
parisons on CPU, desktop GPU (RTX-2080Ti) and Mo-
bile (iPhone 12). Additionally, in Table 1, we port ex-
isting architectures to Pixel-6 TPU and compare with our
model. We observe that MobileOne achieves state-of-the-
art accuracy-latency trade-off on TPU as well.

C. Image Classification
C.1. Training details

All models are trained from scratch using PyTorch [10]
library on a machine with 8 NVIDIA A100 GPUs. All mod-
els are trained for 300 epochs with an effective batch size of
256 using SGD with momentum [11] optimizer. We fol-
low progressive training curriculum [13] for faster training
and better generalization. Throughout training the image
resolution and the augmentation strength(α) is gradually in-
creased, see Table 2. The magnitude for augmentations in
AutoAugment [3] policy are between 0-9, we simply mul-
tiply α with this value to simulate variable strength of au-
toaugmentation. AutoAugment [3] is used to train only the
bigger variants of MobileOne, i.e. S2, S3, and S4. For
smaller variants of MobileOne, i.e. S0 and S1 we use stan-
dard augmentation – random resized cropping and horizon-
tal flipping. We use label smoothing regularization [12]

Latency (ms) ↓

Model Top1 ↑ CPU iPhone12 TensorRT Pixel-6†
(x86) (ANE) (2080Ti) (TPU)

RepVGG-B2 78.8 492.8 6.38 4.79 6.83
RepVGG-B1 78.4 193.7 3.73 3.17 4.28
RepVGG-A2 76.5 93.43 2.41 2.41 2.28
MobileOne-S4 79.4 26.6 1.86 0.95 2.17

EfficientNet-B0 77.1 28.71 1.72 1.35 2.49
MobileOne-S3 78.1 16.47 1.53 0.76 1.28

RepVGG-B0 75.1 55.97 1.82 1.42 1.43
RepVGG-A1 74.5 47.15 1.68 1.42 1.21
MobileOne-S2 77.4 14.87 1.18 0.72 1.07

RepVGG-A0 72.4 43.61 1.23 1.28 1.01
MobileNetV3-L 75.2 17.09 1.09 3.8 1.01
MobileNetV2-x1.4 74.7 15.67 1.36 0.8 0.98
MNASNet-A1 75.8 24.06 1.00 0.95 0.88
MobileNetV2-x1.0 72.0 13.65 0.98 0.69 0.77
MobileOne-S1 75.9 13.04 0.89 0.66 0.79

MobileNetV3-S 67.4 10.38 0.83 3.74 0.67
ShuffleNetV2-x1.0 69.4 16.6 0.68 4.58 -
MobileNetV1 70.6 10.65 0.95 0.58 0.73
MobileOne-S0 71.4 10.55 0.79 0.56 0.59

Table 1. Comparison with mobile architectures on Intel Xeon
CPU, NVIDIA 2080Ti GPU, iPhone 12 and Pixel-6. “†” denotes
models on Pixel-6 TPU, where weights and activations were con-
verted to int8 format. For all other compute platforms, models
were evaluated in fp16 format.

Epoch Range Image Resolution AutoAugment
Strength

0 - 38 160 0.3
39 - 113 192 0.6

114 - 300 224 1.0

Table 2. Progressive training settings. AutoAugment is used only
for training MobileOne-S2,S3,S4 variants.

with cross entropy loss with smoothing factor set to 0.1 for
all models. The initial learning rate is 0.1 and annealed us-
ing a cosine schedule [8]. Initial weight decay coefficient
is set to 10−4 and annealed to 10−5 using the same cosine
schedule. We also use EMA (Exponential Moving Average)

1



Figure 1. Top 1 accuracy vs Latency on iPhone 12. Corresponds to Figure 1a in the main paper.

Figure 2. Zoomed out (a). Corresponds to Figure 1b in the main
paper.

Figure 3. Top-1 accuracy vs mAP. Corresponds to Figure 1c in the
main paper.



Model Top-1 Mobile Training RecipeAccuracy Latency(ms)

MobileOne-S4 (Ours) 79.4 1.86 CosLR + EMA + AA + PL + AWD
MobileOne-S3 (Ours) 78.1 1.53 CosLR + EMA + AA + PL + AWD

EfficientNet-B0 77.1 1.72 Baseline reported by respective authors
EfficientNet-B0 77.4 1.72 WCosLR + EMA + RA + RandE + DropPath + Dropout (Baseline reproduced)
EfficientNet-B0 77.8 1.72 WCosLR + EMA + RA + RandE + DropPath + Dropout + PL + AWD
EfficientNet-B0 74.9 1.72 CosLR + EMA + AA + PL + AWD

MobileOne-S2 (Ours) 77.4 1.18 CosLR + EMA + AA + PL + AWD

MobileNetV2 ×1.4 74.7 1.36 Baseline reported by respective authors
MobileNetV2 ×1.4 75.7 1.36 WCosLR + EMA + RA + RandE + DropPath + Dropout (Baseline reproduced)
MobileNetV2 ×1.4 76.2 1.36 WCosLR + EMA + RA + RandE + DropPath + Dropout + PL + AWD
MobileNetV2 ×1.4 76.0 1.36 CosLR + EMA + AA + PL + AWD

MobileOne-S1 (Ours) 75.9 0.89 CosLR + EMA + PL + AWD

MixNet-S 75.8 1.13 Baseline reported by respective authors
MixNet-S 75.6 1.13 WCosLR + EMA + DropPath (Baseline reproduced)
MixNet-S 75.4 1.13 WCosLR + EMA + DropPath + PL + AWD
MixNet-S 75.5 1.13 CosLR + EMA + PL + AWD

MobileNetV3-L 75.2 1.09 Baseline reported by respective authors
MobileNetV3-L 75.4 1.09 WCosLR + EMA + RA + RandE + DropPath + Dropout + LR Noise (Baseline reproduced)
MobileNetV3-L 75.6 1.09 WCosLR + EMA + RA + RandE + DropPath + Dropout + LR Noise + PL + AWD
MobileNetV3-L 72.5 1.09 CosLR + EMA + AA + PL + AWD

MobileNetV2 ×1.0 72.0 0.98 Baseline reported by respective authors
MobileNetV2 ×1.0 72.9 0.98 WCosLR + EMA (Baseline reproduced)
MobileNetV2 ×1.0 73.0 0.98 WCosLR + EMA + PL + AWD

MobileNetV1 70.6 0.95 Baseline reported by respective authors
MobileNetV1 72.7 0.95 CosLR + EMA (Baseline reproduced)
MobileNetV1 73.7 0.95 CosLR + EMA + PL + AWD

Legend

AA AutoAugment
RA RandAugment
PL Progressive Learning
AWD Annealing Weight Decay
RandE Random Erasing
EMA Exponential Moving Average
CosLR Cosine learning rate schedule
WCosLR Cosine learning rate schedule with Warmup
LR Noise Learning Rate Noise schedule in Timm

Table 3. Top-1 Accuracy on ImageNet-1k for various training recipes.

weight averaging with decay constant of 0.9995 for training
all versions of MobileOne.

C.2. Analysis of Training Recipes

Recent models introduce their own training recipe in-
cluding regularization techniques to train them to competi-
tive accuracies. We ablate over some of the commonly used
recipes to train EfficientNet, MobileNetV3-L, MixNet-S,
MobileNetV2 and MobileNetV1 in Table 3. Mainly, we
report the following,

• Results from original training recipes of the respective
models. (baselines)

• Results from training the models using recipe used to
train MobileOne models.

• Results obtained by adding EMA, Progressive Learn-
ing (PL) and Annealing Weight decay (AWD) to the
original recipe proposed by respective works.

All runs below have been reproduced using Timm li-
brary [14]. For a fair comparison all models are trained
for 300 epochs. From Table 3, we observe that our mod-
els use less regularization techniques as opposed to compet-
ing models like EfficientNet, MobileNetV3-L and MixNet-
S to reach competitive accuracies. When we apply our
training recipe to the competing models, there is no im-
provement in models like EfficientNet, MobileNetV3-L and
MixNet-S. There are slight improvements in MobileNetV2
and MobileNetV1. However, the accuracy at iso-latency
gap between our models is still large. When progressive



Stage Input Stride Block Type # Channels (# Blocks, α, k) act=ReLU

µ0 µ1 µ2

1 224× 224 2 MobileOne-Block 64×α (1, 0.75, 3) (1, 0.75, 2) (1, 0.75, 2)
2 112× 112 2 MobileOne-Block 64×α (2, 0.75, 3) (2, 0.75, 2) (2, 0.75, 2)
3 56× 56 2 MobileOne-Block 128×α (4, 0.5, 3) (6, 0.75, 2) (6, 1.0, 2)
4 28× 28 2 MobileOne-Block 256×α (3, 0.5, 3) (4, 0.75, 2) (4, 1.0, 2)
5 14× 14 1 MobileOne-Block 256×α (3, 0.5, 3) (4, 0.75, 2) (4, 1.0, 2)
6 14× 14 2 MobileOne-Block 512×α (1, 0.75, 3) (1, 1.0, 2) (1, 1.0, 2)
7 7× 7 1 AvgPool - - - -
8 1× 1 1 Linear 512×α 0.75 1.0 1.0

Table 4. MobileOne micro variant specifications.

learning and annealing weight decay is used with base-
line recipes, we obtain additional improvements, for exam-
ple MobileNetV1, gets 1% improvement and MobileNetV2
×1.4 gets 0.5% improvement.

C.3. Sensitivity to Random Seeds

Our model and training runs are stable and give similar
performance with different random seeds, see Table 5.

Model Run #1 Run #2

MobileOne-S0 71.402 71.304
MobileOne-S1 75.858 75.877
MobileOne-S2 77.372 77.234
MobileOne-S3 78.082 78.008
MobileOne-S4 79.436 79.376

Table 5. Runs from 2 different seeds for all variants of MobileOne

D. Micro Architectures
In Table 4, we provide specifications for micro variants

of MobileOne introduced in Table 13 of main paper. Rather
than optimizing for FLOPs, as done in [4,6] we sample vari-
ants that are significantly smaller in parameter count and
use trivial overparameterization to train these architectures
to competitive accuracies.

D.1. Effectiveness of Overparameterization

We find that additional overparameterization branches
benefits smaller variants more than it does for larger vari-
ants. In our experiments, we found that smaller variants
improve consistently with additional overparameterization
branches. Note, for all the experiments in Table 6, we use
the same hyperparameters as described in Section 4 of main
paper.

E. Object Detection
E.1. Training details

SSDLite models were trained for 200 epochs using co-
sine learning rate schedule with warmup, following [9].

k = 1 k = 2 k = 3

MobileOne-µ1 65.7 66.2 65.9
MobileOne-µ2 68.6 69.0 68.8
MobileOne-S0 70.9 70.7 71.3

Table 6. Effect of over-parametrization factor k on MobileOne
variants. Top-1 accuracy on ImageNet is reported.

Linear warmup schedule with a warmup ratio of 0.001 for
4500 iterations was used. Image size of 320×320 was used
for both training and evaluation, following [9]. We used
SGD with momentum optimizer [11] with an initial learning
rate of 0.05, momentum of 0.9 and weight decay of 0.0001
for all the models. We use an effective batchsize of 192,
following [1]. The models were trained on a machine with
8 NVIDIA A100 GPUs.

E.2. Qualitative Results

Visualizations in Figure 4 are generated using
image demo.py [1] with default thresholds in MMDe-
tection library [1]. We compare MobileNetV2-SSDLite
with MobileOne-S2-SSDLite which have similar laten-
cies. Our model outperforms MobileNetV2-SSDLite in
detecting small and large objects. In the first row, our
model detects the potted plants amongst all the clutter in
the scene. In the second row, our model detects both the
dog and frisbee as opposed to MobileNetV2. In the third
row, our model detects the tennis racket and the ball even
though they are blurry. In the remaining rows, our model
consistently detects both small and large foreground objects
as opposed to MobileNetV2.

F. Semantic Segmentation

F.1. Training details

We use the MobileViT repository [9] to train our se-
mantic segmentation models and adopt their hyperparam-
eter settings. Both VOC and ADE20k segmentation models
were trained for 50 epochs using cosine learning rate with a



MobileNetV2-SSDLite MobileOne-S4—SSDLite Ground Truth

MobileNetV2-SSDLite MobileOne-S2—SSDLite

(Ours)

Ground Truth

Figure 4. Qualitative comparison of MobileOne-S2-SSDLite
(middle) against MobileNetV2-SSDLite (left) and ground truth
(right). The two models have similar latency.

maximum learning rate of 10−4 and minimum learning rate
of 10−6. We use 500 warmup iterations. The segmentation
head has a learning rate multiplier of 10. EMA is used with
a momentum of 5 × 10−4. We use AdamW optimizer [7]
with weight decay of 0.01. For VOC, the model is trained
on both MS-COCO and VOC data simultaneously follow-
ing Mehta et al [9]. For both VOC and ADE20k, the only
augmentations used are random resize, random crop, and
horizontal flipping.

F.2. Qualitative Results

We provide qualitative results for semantic segmentation
in Figure 5. Our method performs better than MobileViT-S-
DeepLabV3 as shown. In row 1, we show that MobileViT-S
misclassifies background as airplane. In row 2 and row 6,
our method is able to resolve fine details such as the leg of
the horse and tiny birds. In row 3, MobileViT-S misclassfies

the couch. In row 4, our method is able to segment large
foreground object at a close-up view. In row 5, our method
segments small objects such as the buses.



Image MobileViT-S-
DeepLabV3 [9]

MobileOne-S4-
DeepLabV3 (ours)

Ground Truth

Figure 5. Qualitative results on semantic segmentation. Legend reproduced from DeepLab [2].



References
[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 4

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 6

[3] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation policies from data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[4] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing
Xu, and Tong Zhang. Model rubik’s cube: Twisting resolu-
tion, depth and width for tinynets. In NeurIPS, 2020. 4

[5] Andrew G. Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 1314–
1324, 2019. 1

[6] Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen,
Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, and Nuno
Vasconcelos. Micronet: Improving image recognition with
extremely low flops. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2021.
4

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[8] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations (ICLR), 2017. 1

[9] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2022. 4, 5, 6

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32.
2019. 1

[11] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In Proceedings of the 30th International
Conference on Machine Learning, 2013. 1, 4

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 1

[13] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-
els and faster training. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (ICML), 2021. 1

[14] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 3


