
Appendix

A. JRDB-Pose Annotation Protocol
We begin our annotation process on individual camera

views, initializing with pose estimates from existing pose
estimation methods. In the first phase of annotation, we
used a customized multi-frame annotation tool to adjust
the skeletons and ensure their temporal consistency across
video frames. An in-house track editor was used to merge
or split tracks, as well as to mark when they enter or exit the
scene. In the second phase, we merged the individual cam-
era views into the panoramic views, and used a custom tool
to check overlapping and verify accuracy. After each phase,
all annotations were checked by separate reviewers. When
we merge the individual camera views into a panoramic im-
age, we apply the following protocol to merge annotatinos
from adjacent views: if a joint is labeled in two views, we
use the label from the joint with a higher visibility score; if
the joints have identical visibility scores, we use the pose
with higher overall visibility.

B. Annotation Visualization
JRDB-Pose provides high-quality pose annotations at a

high (15fps) frequency over all JRDB scenes. In Figure
Fig. 8 and Figure Fig. 9 we visualize of our pose annotations
for each of the training scenes. The visualizations show the
indoor and outdoor scenes, varying light conditions, and a
diverse poses representing a wide distribution of actions. To
highlight the high frequency and quality of annotations we
also refer the reader to https://jrdb.erc.monash.
edu/ for video examples of JRDB-Pose.

C. Additional Evaluations
In addition to the evaluation we provide in the main pa-

per, we also include metrics for additional modalities and
camera types. In Tab. 7 we report the tracking results for
our baseline models and pre-training methods using the
panoramic stitched camera images. Similar to the results on
individual camera images, OCTrack outperforms the other
baselines. We also similarly observe that fine-tuning from
COCO yields mixed results with improvements in MOTA
and IDF1 but drops in the other metrics as compared to
training on JRDB-Pose only.

D. Qualitative Analysis
We show predictions made by Yolo-Pose, our best per-

forming pose estimation method, on frames from each of
the testing sequences in Fig. 11 and Fig. 10. The model
used for visualization was initialized from scratch. The
predictions are accurate for most poses, demonstrating that
JRDB-Pose is sufficiently large enough for the model to

learn to predict a wide distribution of poses, even without
pre-training.

E. Cross-dataset generalizability
The table below shows cross-validation results on JRDB-

Pose and PoseTrack21 datasets, where the models are
trained on one and evaluated on the other. The perfor-
mances of the models trained on PoseTrack21 are “mod-
erately low” on JRDB-Pose dataset (around half of the in-
domain performances reported in Table 5). The same be-
haviour is seen on the models trained on JRDB-Pose and
subsequently evaluated on PoseTrack21. This reveals a sig-
nificant domain gap and different challenges between the
two datasets.

Trained on Evaluated on Method MOTA IDF1 IDSW

JRDB-Pose PoseTrack21 ByteTrack 23.89 41.69 666
(Individual) OC-SORT 29.28 48.92 330

Posetrack21 JRDB ByteTrack 28.07 34.81 4359
OC-SORT 35.88 41.49 3290

Figure 8. Visualization of JRDB-Pose annotations on the 27 train-
ing sequences



Figure 9. Visualization of JRDB-Pose annotations from each of
the 27 training sequences in JRDB-Pose (cont.). The images fea-
ture indoor and outdoor areas on a university campus with varying
lighting conditions, motion, pedestrian density, and activities. Lo-
cations include roads, strip malls, sidewalks, restaurants, plazas,
parks, halls, classrooms, laboratories, and office buildings. These
scenes show a wide range of scenarios and human poses that a so-
cial robot would encounter during operations.

Figure 10. Visualization of Yolo-Pose pose estimation predictions
on 27 testing sequences in JRDB-Pose. The weights of the model
are initialized from scratch, demonstrating that JRDB-Pose is suf-
ficiently large for the model to learn accurate pose representations
even without finetuning.



Pose Estimation
Method (Training)

Tracking
Method MOTA ↑ IDF1↑ IDSW↓ O2

pose↓
Components O2

pose↓ by Visibility

Card↓ Loc↓ V↓ O↓ I↓

Yolo-Pose [27]
(COCO only)

ByteTrack [55] 51.00 43.63 5160 0.914 0.815 0.099 0.910 0.912 0.911
UniTrack [50] 45.74 41.35 4475 0.940 0.877 0.064 0.938 0.939 0.938
OCTrack [8] 55.51 45.33 3906 0.895 0.766 0.129 0.892 0.894 0.892

Yolo-Pose [27]
(JRDB-Pose only)

ByteTrack [55] 54.33 39.84 4730 0.920 0.796 0.124 0.917 0.920 0.917
UniTrack [50] 55.90 44.32 4206 0.928 0.849 0.079 0.924 0.928 0.925
OCTrack [8] 61.28 48.08 3296 0.861 0.692 0.169 0.856 0.862 0.855

Yolo-Pose [27]
(COCO→

JRDB-Pose)

ByteTrack [55] 57.69 43.68 4333 0.910 0.791 0.120 0.909 0.911 0.907
UniTrack [50] 59.37 46.82 3779 0.921 0.841 0.080 0.919 0.921 0.918
OCTrack [8] 63.02 49.04 3394 0.870 0.715 0.155 0.867 0.871 0.865

Table 7. Multi-person pose tracking baselines evaluated on JRDB-Pose stitched camera images.

Figure 11. Visualization of Yolo-Pose predictions on 27 testing
sequences in JRDB-Pose dataset (cont.)


