
Video v

…

CLIP Temporal Encoder…
Embedded 

Frames
Embedded 

Video
Prompt Selector

Keys Prompts

𝐊𝟏,𝟏

𝐊𝟏,𝟐

𝐊𝟏,𝐌𝟏

𝐊𝒏,𝟏

𝐊𝒏,𝟐

𝐊𝒏,𝐌𝒏

Spatial Prompt 
Task 1

Temp Prompt 
Task 1

Spatial Prompt 
Task n

Temp Prompt 
Task n

…
Find the nearest 
Key and get its 

related prompts

…
…

…

Figure 4. Outline of Prompt Selector. Our prompt selector leverages the CLIP fsp and Temporal Encoder ftp as the query function
q = fsp ◦ftp to select the suitable task prompts based on the similarity between the encoded video q(v) and the keys K of all task prompts.

A. Prompt Selector
In Section 3.3, we outlined our key components in PIVOT. The Prompt Selector module in PIVOT selects the most suitable

prompts for classifying a given input. Here we delve into the details of our Prompt Selector module.
Given a class incremental sequence of n tasks, PIVOT learns a set of n task-specific prompts Pi = {(P sp

i , P tp
i )}ni=1,

where each prompt Pi is a key-value pair (Ki, Pi). Note that Ki consists of the encoded representations of the Mi labels
found in task i. These representations are obtained using the CLIP Text encoder. As can be seen in Figure 4, our prompt
selector passes the video v through the CLIP visual encoder fsp and our temporal encoder ftp to compute a query ftp(fsp(v)).
Following the tokenization procedure of CLIP, each input representation includes a [class] token. The computation of our
query takes into account the [class] tokens encoded in the representations of both the visual and temporal encoders. PIVOT
selects the corresponding task prompts for v based on the similarity between the query and all keys.

We present Algorithm 2, which summarizes the prompt selection process of PIVOT and how it uses the selected prompts.
Likewise, Algorithm 1 clarifies the forward pass of our base PIVOT w/o prompts, which does not require the task-specific
prompts.

Algorithm 1: PIVOT w/o prompts Forward Pass
Data:
Y = (y1, ..., yM ) ; /* The representations of all learned classes computed with the
CLIP Text Encoder. */

Components:
fsp, ftp ; /* CLIP Model, Temporal Encoder */
γ(., .), fcls ; /* Cosine distance function, Select the class label whose
representation is most similar to the video */

Forward Pass:
vtp = ftp(fsp(v)) where v ∈ Dt ; /* Compute the video embedding */
y = fcls(vtp,Y) ; /* Classify the video */

B. Number of Trainable Parameters in PIVOT
Considering the implementation details presented in section 4, we analyze and compare the trainable parameters of our

PIVOT model against the baseline models. Note that the vCLIMB baselines utilize TSN as a backbone and train it at every
task. On the other hand in PIVOT w/o prompts, we leverage the extensive knowledge of CLIP by freezing its visual and text
encoders, so we only train our temporal encoder. In PIVOT, we further learn task-specific prompts, which does not result in
a significance increase in the number of parameters. As a result of leveraging the knowledge in CLIP without fine-tuning it,



Table 4. The number of trainable parameters. All the vCLIMB Baselines use the TSN with ResNet50 as a backbone, in addition to
a linear layer to perform the classification. These models have approximately the same number of parameters. We consider ActivityNet,
which have 200 classes in total, to compute the number of parameters of the linear layers. We note that PIVOT w/o prompts and PIVOT
results in an order of magnitude reduction in the number of parameters to train in video class incremental learning.

Model Num. Trainable Parameters

vCLIMB Baselines 23.610632× 106

PIVOT (10-task) 9.496064× 106

PIVOT (20-task) 9.534464× 106

PIVOT w/o prompts 9.457664× 106

Table 5. Prompt Hyper-parameters. We vary the prompt length (L) and number of prompts per task (Np) and report PIVOT performance.
To assess L, we fix Np = 1 and use the same L for both spatial and temporal prompts (L = Lsp = Ltp). Likewise, for Np, we set L to
its optimal value (L = 3).

Length of prompts Acc Num. Prompts Acc

PIVOT (L = 1) 73.2% PIVOT (Np = 1) 73.8%
PIVOT (L = 3) 73.8% PIVOT (Np = 2) 72.60%
PIVOT (L = 5) 73.1% PIVOT (Np = 4) 70.59%
PIVOT (L = 7) 72.7% PIVOT (Np = 6) 69.11%

we substantially reduce the number of total trainable parameters. Table 4 shows that PIVOT w/o prompts and PIVOT train
at most 40.56% of the parameters that the vCLIMB baselines train. It is worth highlighting that the task-specific prompts
correspond to an increase of 0.40% and 0.80% of PIVOT w/o prompts parameters in the 10-task and 20-task scenarios,
respectively. Thus, the resulting PIVOT is comparable in the number of parameters to PIVOT w/o prompts.

C. Prompt Hyper-parameter Analysis
As observed in Table 5, we explored different configurations for the prompt length L and number of prompts Np per task

on the validation set of the most challenging dataset we evaluated, ActivityNet. We considered the same L for both spatial
and temporal prompts (L = Lsp = Ltp). PIVOT is more sensitive to the number of prompts per task than their length. It is
important to note that Np = 1 and L = 3 for both spatial and temporal prompts work better for ActivityNet. For simplicity,
we use the same setup for the other datasets we evaluated.



Algorithm 2: PIVOT Forward Pass
Data:
Y = (y1, ..., yM ) ; /* The representations of all learned classes computed with the
CLIP Text Encoder */

Components:
fsp, ftp ; /* CLIP Model, Temporal Encoder */
fsp = fe

sp ◦ fs
sp’ ; /* Where fe

sp is the input layer and fs
sp the self-attention layers

*/
favg
sp , favg

tp ; /* Compute an average pooling through the added spatial and temporal

prompts */
(Ki, Pi)

n
i=1 ; /* Set of prompts for the n tasks */

Ki ∈ RMi×Dm ; /* Keys of task i, where Mi is the number classes of task i */

Pi = (P sp
i , P tp

i ) ; /* Spatial and Temporal Prompts of task i */
γ(., .), fcls ; /* Cosine distance function, Select the class label whose
representation is most similar to the video */

Forward Pass:
vtp = ftp(fsp(v)) where v ∈ Dt ; /* Compute the Query */
Pk = fmin(γ(vtp,K)) ; /* Select the task prompt that is closet the Query */
vesp = [P sp

k ; fe
sp(v)] ; /* Add the spatial prompt */

vavgsp = favg
sp (fs

sp(vesp)) ; /* Compute the representation of the frames per video */

vtp = favg
tp (ftp([P

tp
k , vavgsp ])) ; /* Add the temporal prompt and Compute the final video

embedding */
y = fcls(vtp,Y) ; /* Classify the video */


	. Prompt Selector
	. Number of Trainable Parameters in PIVOT
	. Prompt Hyper-parameter Analysis

