A-CAP: Anticipation Captioning with Commonsense Knowledge
Supplemental Material

I. Prompt Learning

The prompt learning was developed by NLP research
[41, 42, 43]. It considers pre-trained language models such
as BERT [10], as knowledge-based sources of useful infor-
mation for downstream tasks. The key idea is to create
a prompt (template) that can guide the pre-trained model
through the adaptation process to a new task. It should be
noted that the prompt format should be the same as the in-
put format learned by the pre-trained model. Furthermore,
the parameters of the pre-trained model are not updated dur-
ing the training process; instead, we train the layers to learn
prompt embeddings. The concept of prompt learning has
recently been explored in computer vision [39, 40], where
the context-word-generated prompt is converted into a set of
learnable vectors and fed into a pre-trained vision-language
model to solve downstream tasks.

In our method, we use prompt learning in the same
way as recent methods [39, 40]. We see that the key idea
of VinVL [38] is the usage of concepts (object names),
which allows better alignment between vision and language
spaces, leading to the appearance of concepts in the cap-
tion. If we add forecasted concepts to the model, the model
will be able to generate the caption based on the forecasted
concepts. In our method, we combine detected and fore-
casted concepts to create the prompt. To this end, we change
the VinVL’s input to words—(detected, forecasted)concepts—
ROIs because the format of the prompt should be familiar
to the pre-trained model (i.e., sequence of words—concepts—
ROIs). During the training time, by using cross-entropy
loss, we update the graph neural network to learn the em-
beddings for the concepts to ensure that the pre-trained
model can understand the prompt embeddings. After train-
ing, the pre-trained model can easily generate the desired
captions from the input.

II. More Examples

We randomly select more examples of captions gener-
ated by our method and our compared methods. They are
shown in Figs. A, C, E, and G. We also show their corre-
sponding generated images obtained by using stable diffu-
sion model [28] in Figs. B, D, F, and H. Along with Fig.3 in

the main paper, these figures consistently demonstrate that
our method generates captions that are more accurate, de-
scriptive, and plausible than the other methods.

In addition, Figs. I and J show the captions generated
by ablated models: A-CAP w/o GNN, A-CAP w/o context,
and our full model. We can see that, as stated in the main
paper, the captions generated by A-CAP w/o GNN most
likely describe the inputs, whereas those generated by A-
CAP w/o context are far from the inputs. Meanwhile, our
full model can produce plausible captions.

The observations from the additional examples support
our conclusion that our method is better suited to the antic-
ipation captioning task than the other methods and ablated
models.

I1I. Visualization of Knowledge Graph

We visualize the knowledge graphs corresponding to the
examples in Fig.3 (main paper) in Figs. K, L, M, and N to
better understand the contributions of forecasted concepts
in the anticipated captions. The left graph in each figure is
the full knowledge graph, which contains all detected and
forecasted concepts. We see nodes in the graph are densely
connected, meaning most nodes are related. We remark that
the number of nodes is 100 (= 4 x 104 60) and the number
of edges is 6000 on average.

The right graph, on the other hand, is the portion of the
knowledge graph that is extracted using only the forecasted
concepts (brown nodes) appearing in the anticipated cap-
tion and the detected concepts (blue nodes) related to the
forecasted ones. We can see that our method successfully
retrieves forecasted concepts from ConceptNet [30], which
are the future of detected concepts. More importantly, our
method can include forecasted concepts in the final caption
thanks to our usage of prompt learning.
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Figure A. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.
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Figure B. The generated images obtained by using stable diffusion model [28] to generate an image from each generated caption in Fig. A.
The order of images is the same as the order of captions in Fig. A. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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Figure C. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.
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Figure D. The generated images obtained by using stable diffusion model [28] to generate an image from each generated caption in Fig. C.
The order of images is the same as the order of captions in Fig. C. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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Figure E. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.
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Figure F. The generated images obtained by using stable diffusion model [28] to generate an image from each generated caption in Fig. E.
The order of images is the same as the order of captions in Fig. E. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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Figure G. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.
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Figure H. The generated images obtained by using stable diffusion model [28] to generate an image from each generated caption in Fig. G.
The order of images is the same as the order of captions in Fig. G. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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Figure I. Examples of generated captions by two ablated models: A-CAP w/o GNN, A-CAP w/o context, and full model A-CAP. We select
two inputs where the detected concepts almost overlap. A-CAP w/o GNN generates captions that most likely describe the inputs. A-CAP
w/o context generates captions that are far from the inputs and similar to each other.
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Figure J. Examples of generated captions by two ablated models: A-CAP w/o GNN, A-CAP w/o context, and full model A-CAP. We
select two inputs where the detected concepts almost overlap. A-CAP w/o GNN generates captions that most likely describe the inputs.
A-CAP w/o context generates captions that are far from the inputs and similar to each other.
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Figure K. Visualization of knowledge graph of the first example in Fig.3 in the main paper. The full graph is shown on the left, while the
detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.
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Figure L. Visualization of knowledge graph of the second example in Fig.3 in the main paper. The full graph is shown on the left, while
the detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.
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Figure M. Visualization of knowledge graph of the third example in Fig.3 in the main paper. The full graph is shown on the left, while the
detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.
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Figure N. Visualization of knowledge graph of the fourth example in Fig.3 in the main paper. The full graph is shown on the left, while
the detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.



	. Prompt Learning
	. More Examples
	. Visualization of Knowledge Graph

