
3Mformer: Multi-order Multi-mode Transformer
for Skeletal Action Recognition

– Supplementary Material –

Lei Wang†, § Piotr Koniusz⇤, §, †
†Australian National University, §Data61rCSIRO

§firstname.lastname@data61.csiro.au

A. Visualization of 3Mformer
Fig. 4 shows the visualization of our 3Mformer. The

green and orange blocks denote the Multi-order Pooling
(MP) and the Temporal block Pooling (TP) respectively,
which are two basic building blocks that can be stacked to
form our 3Mformer. More precisely, our 3Mformer con-
sists of two branches: (i) MP followed by TP (denoted MP
! TP, Fig. 4a) and (ii) TP followed by MP (denoted TP!
MP, Fig. 4b).

B. Skeletal Graph and Hypergraph
Skeletal Graph [64]. Let G= (V, E) be a skeletal graph with
the vertex set V of nodes (body joints) {v1, ..., vJ}, and E be
edges (bones) of the graph, and E consists of ES and ET .
The subset ES = {(vit, v jt) : i, j 2 IJ and t 2 IT } represents
that at time step t, each pair of joints (vit, v jt) correspond-
ing to skeletal connectivity diagram is connected; whereas
ET = {(vit, vi(t+1)) : i 2 IJ and t 2 IT } forms the connection
of the same joint across time. The set of joints and edges
together form the skeleton graph. If two body joints are
connected by an edge, the corresponding element in the in-
cidence matrix H is equal to 1, otherwise it is equal to 0,
and the adjacency matrix A = HT H � 2I (where I is the
identity matrix). The update rule of a common GCN model
at time step t is defined as:

X(l+1)
t =�

�eD�
1
2eAeD�

1
2 X(l)

t ⇥(l)�, (11)

where �(·) is a non-linearity, eD is the graph degree matrix,
X(l)

t is the input data of the convolutional layer l at the time
step t and ⇥(l) is the learnable parameters of layer l. eA =
A + I is a normalized graph adjacency matrix.

The tensor representation of graph data can be given by
X2RJ2

⇥d where d is the feature channel dimension.
Skeletal Hypergraph [15, 35]. Hypergraph captures com-
plex higher-order relationships by hyper-edges that connect

*Corresponding author.

more than two nodes (body joints). Each hyper-edge is a
subset of all nodes. Let Gh= (Vh, Eh,Wh) where Vh, Eh and
Wh denote respectively the set of body joints, hyper-edges
and the weights of hyper-edges. Given v2Vh and e2Eh, the
elements in the incidence matrix Hh of the skeleton hyper-
graph are defined as Hh,v,e = 1, or simply put h(v, e) = 1,
if vertex v is part of edge e, 0 otherwise. The degree of
node/body joint v2Vh is the number of hyper-edges passing
through the node, which is defined as:

d(v)=
X

e2Eh

w(e)h(v, e), (12)

where w(e) is the weight of hyper-edge e. The degree of
hyper-edge e 2 Eh is the number of nodes (body joints)
contained in the hyper-edge e that satisfies:

�(e)=
X

v2Vh

h(v, e). (13)

Moreover, let Dv and De be the diagonal matrices of node
degrees d(v) and the hyper-edge degrees �(e) respectively.
Let W denote the diagonal matrix of the hyper-edge weights
(initially the weights of all hyper-edges are set to 1). Then
the update rule of the Hypergraph Convolutional Network
at the time step t is given by:

X(l+1)
t =�

�
D

1
2
v HhWD�1

e H>h D
1
2
v X(l)

t ⇥(l)�, (14)

where ⇥(l) are learnable parameters for layer l.

C. Skeleton Data Preprocessing
Before passing the skeleton sequences into MLP, we first

normalize each body joint w.r.t. to the torso joint v f ,c:

v0f ,i=v f ,i�v f ,c, (15)

where f and i are the index of video frame and human body
joint respectively. After that, we further normalize each

13

SoftM
ax

Scale

M
atM

ul

M
atM

ul

123

423

523
623 623∗ (9::)< reshape 9

Linear

Linear

Linear

Linear

Linear

Linear

9::

SoftM
ax

Scale

M
atM

ul

M
atM

ul

1=3

4=3

5=3
Pooling step

CmSA

‘channel-temporal
block’ token

‘order-channel-body
joint’ token

6=3::∗

623
(>)?(>)

CmSA

(a) Single-branch: MP followed by TP (denoted MP!TP).

6=3∗ (9:)< reshape

SoftM
ax

Scale

M
atM

ul

M
atM

ul

123

423

523
623

Linear

Linear

Linear

Linear

Linear

Linear

SoftM
ax

Scale

M
atM

ul

M
atM

ul

1=3

4=3

5=3
Pooling step9

9: 623:∗

‘channel-hyper-edge’
token

‘channel-only’
token

623
(>)?:(>)

CmSA

CmSA

(b) Single-branch: TP followed by MP (denoted TP!MP).

Figure 4. Visualization of 3Mformer which is a two- branch model: (a) MP!TP and (b) TP!MP. Green and orange blocks are Multi-
order Pooling (MP) module and Temporal block Pooling (TP) module, respectively. (m) inside the MP module denotes the order m 2 Ir of
hyper-edges. These two modules (MP and TP) are the basic building blocks which are further stacked to form our 3Mformer. Each module
(MP or TP) uses a specific coupled-mode token through matricization (we use reshape for simplicity), e.g., ‘channel-temporal block’,
‘order-channel-body joint’, ‘channel-hyper-edge (any order)’ or ‘channel-only’, and the Coupled-mode Self-Attention (CmSA) is used to
explore the coupled-mode relationships inside the coupled-mode tokens. We also form our multi-head CmSA as in standard Transformer
(where the CmSA module repeats its computations multiple times in parallel and the attention module splits the query, key and value, each
split is independently passed through a separate head and later combined together to produce the final coupled-mode attention score). We
omit the multi-head visualization for simplicity and better visualization purposes.

joint coordinate into [-1, 1] range:

v̂ f ,i[j] =
v0f ,i[j]

max([abs(v0f ,i[j])] f2I⌧,i2IJ)
, (16)

where j is for selection of the x, y and z axes, ⌧ is the number
of frames and J is the number of 3D body joints per frame.

For the skeleton sequences that have more than one per-
forming subject, (i) we normalize each skeleton separately,

Table 5. Ablations of di↵erent pooling methods in MP.

Pooling NTU-60 NTU-120 Kinetics-Skel.
X-Sub X-View X-Sub X-Set Top-1 acc.

avg-pool 91.3 96.8 86.5 89.0 41.9
max-pool 92.7 98.0 88.5 91.0 43.8
wei-pool (ours) 94.8 98.7 92.0 93.8 48.3

and each skeleton is passed to MLP for learning the tem-
poral dynamics, and (ii) for the output features per skeleton
from MLP, we pass them separately to the block-temporal
HoT, e.g., two skeletons from a given video sequence will
have two outputs obtained from the the block-temporal
HoT, and we aggregate the outputs through average pool-
ing before passing our 3Mformer.

D. Additional Results and Discussions
D.1. Ablations of MP

We choose average pooling (avg-pool) and max-pooling
(max-pool) for hyper-edge features in comparison to our
learned weighted pooling (wei-pool), and the comparisons
are given in Table 5. As shown in the table, our learned
weighted pooling (wei-pool) consistently achieves the best
performance on all 3 datasets.

D.2. Learning the short-term temporal patterns

A block of T neighbor frames are passed to the MLP
unit to capture the short-term temporal patterns. The whole
sequence consists of ⌧ such blocks, each passed separately
through the MLP unit (and each joint 1, ..., J). Thus, the
MLP only mixes the information from 1, ...,T frames of
a given block/body joint j and captures short-term rela-
tions (within-block) of a given 3D body joint (in contrast
to between-block relations). The MLP unit input size is 3T ;
3 due to 3D coordinate). The MLP : R3T

! Rd contains:
FC (3T! 6T), ReLU, FC (6T! 9T), ReLU, Dropout, FC
(9T ! d). J body joints and ⌧ blocks are treated as the
batch dimension. Feature output size d: 100, 150, 420 on
NTU-60, NTU-120, Kinetics-Skeleton.

D.3. Why 3Mformer works and when does it fail?

Our method works well as it (i) uses skeletal hyper-
graphs of various orders to learn the interaction of varying
size groups of skeletal joints (as opposed to typical skeleton
graph physical connectivity), (ii) fuses groups multiple or-
ders by 3Mformer by several coupled-token types via two
basic building blocks (MP & TP) that learn various aspects
of higher-order motion dynamics. Multiple-order hyper-
edges are more resistant to noise (e.g., Kinetics-Skeleton
is noisy due to the pose estimation errors), if one body joint
is noisy (but the rest is stable). We inject Gaussian noise
into 3D ankle joints, vary noise amplitude, and we show the

Table 6. Comparisons of robustness w.r.t. Gaussian noise.

original ⇥ 1 ⇥ 1.5 ⇥ 2

ST-GCN 81.5 74.9 (#6.6) 69.2 (#12.3) 50.1 (#31.4)
3Mformer 94.8 91.9 (#2.9) 89.5 (#5.3) 86.8 (#8.0)

Table 7. Experimental results on MSRAction3D.

order 2 3 4

acc.(%) 73.82 63.64 55.27

Table 8. A comparison of the number of model parameters and
FLOPs on NTU-60.

ST-GCN 2S-AGCN NAS-GCN 2rd-order 3rd-order 3Mformer
only (ours) only (ours) (ours)

Params (M) 3.14 3.45 6.57 1.15 2.07 4.37
FLOPs (G) 16.36 37.22 108.82 6.54 35.53 58.45
Acc. (%) 81.5 88.5 89.4 83.0 91.3 94.8

experimental results in Table 6. As shown in the table, our
3Mformer copes with noise better than ST-GCN.

Our method may underperform if (i) the backbone en-
coder cannot e�ciently produce higher-order features (ii)
the number of skeletal joints are very large (the number of
hyper-edge features would be very large) (iii) when dataset
is too small to learn high-order interactions (extra learnable
parameters). For example, see the experimental results on
MSRAction3D in Table 7.

We notice that small datasets may be not enough to train
high-order models (Table 7). On key classic large datasets,
NTU-60, NTU-120 and Kinetics-Skeleton, we do not ob-
serve any issue as human motions exhibit similar multi-joint
dynamics for typical action classes. Perhaps some fine-
grained unusual action classes could pose problems.

D.4. Model Complexity
Table 8 shows the number of model parameters/FLOPs

and NTU-60 accuracy. Our cost is moderate. 2S-AGCN
(37.22 GFLOPs & 3.45M param.) yields 89.4% accuracy.
Our ‘3rd-order’ uses 35.5 GFLOPs & 2.07M param. which
is 2 GFLOPs & 1.37M param. less, yet we outperform 2S-
AGC by 1.9%. NAS-GCN uses 40.4 GFLOPs/2.2M param.
more compared to our 3Mformer: we beat NAS-GCN by
4.4%.

D.5. Limitation and Future Work
Despite the high accuracy of our model, there are still

some limitations. Firstly, as we use r branches of HoT, the
number of parameters and computational cost are higher
than existing methods. However, our method with single
branch, e.g., 3rd-order HoT only, still achieves very compet-
itive results compared to existing graph-, transformer- and
hypergraph-based models for the same parameter scale on 3
benchmarks. Secondly, in this work, we only use HoT block
to encode the temporal block feature representations. The

more e�cient way is to redesign HoT block so that it is able
to encode both short-term and long-term spatio-temporal
features to simplify the backbone encoder, i.e., without the
need of MLP unit. Note that the design of our 3Mformer is
independent of the backbone encoder. Our 3Mformer is es-
pecially suitable for tensorial data, e.g., higher-order feature
representations. Our future work will focus on applying our
Multi-order Multi-mode Transformer (3Mformer) to other
computer vision tasks with tensorial data.

