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Supplementary Content
This supplement is organized as follows:

e Section A contains network architecture details;

 Section B contains more details on the training and inference settings;

¢ Section C contains more ablation studies of our method;

 Section D contains both quantitative and qualitative results on ShapeNet dataset;
* Section E contains more qualitative results on Synthetic Room dataset;

* Section F contains additional qualitative results on ScanNet dataset;

¢ Section G contains evaluation of different noise levels;

* Section H contains the code link of the comparison baselines; and

¢ Section I contains discussion on the limitation of our method and future work.

A. Network Architecture

PointNet: Given the input un-oriented point cloud P = { p;, € R3 }5:1 , where S is the number of input points, we map the
input coordinates to point features using a fully-connected layer and a ResNet-FC [3] block. Instead of using global features
as in [1 1], we use locally-pooled features to fuse local features. Specifically, we aggregate features within the same plane or
voxel cell from a 2D triplanar or 3D volumetric grids using max-pooling. We concatenate the locally pooled features with the
feature before pooling and then input to the next ResNet block. To obtain the final point features, there are totally 5 ResNet
blocks used.

Our ALTO U-Net: Our alternation U-Net architecture is similar to traditional U-Net [2, 12], except that we replace the
convolution-only block with our ALTO block where point and grid (either 2D or 3D) features are converted back and forth
as depicted in Fig. 3 of main paper. The input and output feature dimensions is set to be 32. There is no ALTO block in the
final block of the U-Net.

Our Attention-based Decoder: For the triplane representation, we implement 3 single-head attention for 3 feature planes
respectively, where the hidden dimension is equal to the feature dimension 32. For the volume representation, we implement
a multi-head attention with h heads. To maximize the flexibility of our method for different datasets and experiments, we set
the number of heads & as a hyperparameter and the hidden dimension as h x feature dimension(32). The following occupancy
network consisting of 5 stacked ResNet-FC blocks with skip connections is used to predict the occupancy probability of query
point features. For all experiments, we use a hidden dimension equal to the attention output feature dimension and 5 ResNet
blocks for the occupancy network.

“Equal contribution.



Total # of alternation blocks IoU 1 Chamfer-L; | NC1  F-scoref

0 0.831 0.55 0912  0.892
3 0.847 0.50 0914 0910
6 0.863 0.47 0922  0.924

Table A. Ablation study of total number of ALTO alternation blocks on ShapeNet dataset with 300 input points.

Method IoU1 Chamfer-L; | NCT  F-scorel
ConvONet (3 x 1282) [10] 0.805 0.44 0.903 0.948
ConvONet (643) [10] 0.849 0.42 0.915 0.964
ALTO (3 x 1282, Encoder Only)  0.834 043 0.906 0.960
ALTO (3 x 128%) 0.895 0.37 0910 0974
ALTO (643, Encoder Only) 0.903 0.36 0.920 0.978
ALTO (643) 0.914 0.35 0.921 0.981

Table B. Ablation study of our attention-based decoder for different latent topologies used (i.e. point-triplane and point-voxel
alternations) on Synthetic Room dataset. Input points 10K with noise added. Boldface font represents the preferred results.

B. Training and Inference Details

Object-Level Reconstruction: For object-level reconstruction in ShapeNet, we use alternation between latent topologies:
point and triplane, because triplane representation is found to tend to give better results for object-level reconstruction in
ConvONet [10]. The dimension of each 2D feature plane is set as 642. The depth of our ALTO U-Net is 4, and we do not
downsample or upsample in the top two levels of the U-Net, so the lowest resolution of the U-Net is 162

Scene-Level Reconstruction: For scene-level reconstruction, we use alternation between two topologies: point and feature
volume. The dimension of the feature volume is set as 643. The depth of our ALTO U-Net is 4, and similarly we do not
downsample or upsample in the top two levels, so the lowest resolution of the U-Net is 163. At decoder stage, we set the
hyperparameter /s = 4 for experiments on Synthetic Room dataset and & = 1 for experiments on ScanNet dataset which we
find the best performance in practice.

Mesh Generation: We use a form of Marching Cubes (MC) [7] to evaluate occupancy values from implicit representations
on a 3D grid. As a result of Marching Cube, the vertices are usually placed in the middle of segments, which causes
discretization effects [1]. To deal with this issue, we apply the refinement method from POCO [1], which takes both the
generated vertices and their floor to predict their occupancy values again. After that, we compare two values, mask out
non-perfect vertices, take the average between the generated vertices and their floor, and repeat 10 times to improve the
granularity. For object-level reconstruction, we use resolution 128 and for scene-level reconstruction, we use resolution 256
for marching cubes.

Hardware: We describe the detailed setups that have been used for inference evaluation:
* CUDA version: 11.1
» PyTorch version: 1.9.0
* GPU: single NVIDIA GeForce RTX 3090
* CPU: AMD RYZEN PRO 3955WX 16-Cores CPU

C. Ablation Studies
C.a. Alternation blocks

In Tab. A, we report the performance of method with different number of alternations between point and grid forms within
each block in the ALTO U-Net. 0 represents no point-grid alternations (i.e. staying with only grid form), 3 represents



that there is only point-grid alternation in the top two levels of our ALTO U-Net, and 6 represents that there is point-grid
alternations in each level of our ALTO U-Net. As we can see the results, we can observe the trend that increasing the number
of ALTO blocks improves the results for all the metrics.

C.b. Attention-based decoder

We also report the results of the ablation study of our attention-based decoder on synthetic room dataset in Tab. B. As
demonstrated in the table, with our attention-based decoder, it improves results for both triplanar (3 x 128%) and volumetric
representations (64%).

C.c. Alternating vs parallel latent topologies

We experimentally show that our alternating strategy significantly outperforms the simultaneous strategy (Tab. C). We
believe that alternating strategy’s information exchange between the points and grids in each layer is the critical factor.

ShapeNet dataset Synthetic Room dataset
Method IoUt Chamfer-L;] NC{1  F-scoret IoUt Chamfer-Ly/ NCt  F-scorel
ALTO w/ parallel topologies  0.873 0.47 0.935 0.931 0.832 0.42 0919  0.960
ALTO 0.905 0.35 0940 0964 0.914 0.35 0.921 0.981

Table C. Alternating topologies show better performance than the parallel latent topologies. Boldface font represents the preferred
results.

C.d. Skip connections

In Tab. D, we show that consecutive layers and UNet-style skip connections are important.

Method IoUt Chamfer-L;] NCt  F-scoret
ALTO w/o layer skip  0.890 0.40 0.932 0.952
ALTO w/o UNet skip  0.898 0.37 0.936 0.959
ALTO 0.905 0.35 0.940 0.964

Table D. Ablations for skip connections.

D. Additional Results on ShapeNet
D.a. Quantitative results

We show per-category quantitative results in ShapeNet with various point density levels: 3K input points (Tab. E), 1K
input points (Tab. F) and 300 input points (Tab. G). It is notable that when point clouds get sparser, ALTO performs better
than POCO on all four metrics for all categories. We also show comparison with SAP [9] in Tab. H.

D.b. Qualitative results

Besides 1K input points for ShapeNet as we show in Fig. 6 of the main paper, we show additional qualitative results in
ShapeNet with 3K input points in Fig. A and 300 input points in Fig. B.

E. Additional Results on Synthetic Room Dataset

We show additional qualitative results in Synthetic Room dataset with 10K inputs points in Fig. C and 3K inputs points
in Fig. D.

Additionally, we compare our method to SA-ConvONet [13] (c.f. Tab. I) under the same settings. Note that our method
performs better than SA-ConvONet with 10K input points, while SA-ConvONet takes 30K. We also outperform 3D-ILG [15]
(10U 0.919 vs 0.866; Ch-L; 0.34 vs 0.31; F-score 0.983 vs 0.979) on IoU and F-score, though having less input points (ALTO
10,000 vs 3D-ILG 16,384).



ToU 1 Chamfer-Lq |

Method ONet [8] ConvONet [10] POCO[I] ALTO ONet[8] ConvONet[I0] POCO][I] ALTO
Airplane 0.734 0.849 0.902 0.908 0.64 0.34 0.23 0.22
Bench 0.682 0.830 0.865 0.890 0.67 0.35 0.28 0.26
Cabinet 0.855 0.940 0.960 0.965 0.82 0.46 0.37 0.34
Car 0.830 0.886 0.921 0.924 1.04 0.75 0.41 043
Chair 0.720 0.871 0.919 0.925 0.95 0.46 0.33 0.32
Display 0.799 0.927 0.956 0.962 0.82 0.36 0.28 0.27
Lamp 0.546 0.785 0.877 0.868 1.59 0.59 0.33 0.34
Loudspeaker 0.826 0.918 0.957 0.953 1.18 0.64 0.41 0.41
Rifle 0.668 0.846 0.897 0.898 0.66 0.28 0.19 0.19
Sofa 0.865 0.936 0.963 0.966 0.73 0.42 0.30 0.29
Table 0.739 0.888 0.924 0.937 0.76 0.38 0.31 0.29
Telephone 0.896 0.955 0.968 0.977 0.46 0.27 0.22 0.21
Vessel 0.729 0.865 0.927 0.924 0.94 0.43 0.25 0.26
mean 0.761 0.884 0.926 0.931 0.87 0.44 0.30 0.30
NC 1 F-score 1
Method ONet [8] ConvONet [10] POCO[I] ALTO ONet[8] ConvONet[I0] POCO][I] ALTO
Airplane 0.886 0.931 0.944 0.949 0.829 0.965 0.994 0.992
Bench 0.871 0.921 0.928 0.941 0.827 0.964 0.988 0.991
Cabinet 0.913 0.956 0.961 0.967 0.833 0.956 0.979 0.982
Car 0.874 0.893 0.894 0.917 0.747 0.849 0.946 0.940
Chair 0.886 0.943 0.956 0.959 0.730 0.939 0.985 0.985
Display 0.926 0.968 0.975 0.976 0.795 0.971 0.994 0.993
Lamp 0.809 0.900 0.929 0.924 0.581 0.892 0.975 0.962
Loudspeaker 0.903 0.939 0.952 0.951 0.727 0.892 0.964 0.955
Rifle 0.849 0.929 0.949 0.949 0.818 0.980 0.998 0.996
Sofa 0.928 0.958 0.967 0.971 0.832 0.953 0.989 0.987
Table 0.917 0.959 0.966 0.968 0.824 0.967 0.991 0.990
Telephone 0.970 0.983 0.985 0.987 0.930 0.989 0.998 0.998
Vessel 0.857 0.919 0.940 0.940 0.734 0.931 0.989 0.982
mean 0.891 0.938 0.950 0.954 0.785 0.942 0.984 0.981

Table E. Performance on ShapeNet with input noisy point cloud 3K. Boldface font represents the preferred results.

F. Additional Results on ScanNet

We demonstrate the Sim2Real qualitative results with the model trained on Synthetic Room dataset and tested on ScanNet
in Fig. 8 of the main paper. We show in Fig. E of the supplement material the Sim2Real results with different point density
levels (i.e. Nypin=10k, Nt.s=3k) to further demonstrate the generalization capability of our method ALTO.

G. Evaluate robustness to different noise levels

We test our model with two additional noise levels, 0.0 and 0.25, which shows that ALTO outperforms ConvONet [10]
and POCO [1] on all metrics (Tab. J). ALTO also outperforms SAP [9] (Chamfer-L;: 0.54, F-score: 0.896, NC: 0.917) at the
high noise level of 0.25, even though SAP is specifically designed to cope with high noise.

H. Comparison Code Links

We list all the links of the code of the comparisons baselines in Tab. K. Our code is available at https://visual.
ee.ucla.edu/alto.htm/.

I. Limitation and Future Work

For our current method, we are not learning a probabilistic generative model that can learn the distribution of the input
data, which limits the diversity of the shapes our model can generate. Moreover, we are uniformly sampling points as in
previous work such as [10]. More efficient sampling strategy that samples more points on densely populated regions and less
on sparsely populated regions can be adopted to capture more details on the fine-grained areas.


https://visual.ee.ucla.edu/alto.htm/
https://visual.ee.ucla.edu/alto.htm/

IoU 1

Chamfer-Lq |

Method ONet [8] ConvONet [10] POCO[I] ALTO ONet[8] ConvONet[I0] POCO][I] ALTO
Airplane 0.748 0.825 0.850 0.872 0.59 0.39 0.32 0.29
Bench 0.702 0.798 0.804 0.856 0.62 0.40 0.38 0.30
Cabinet 0.862 0.926 0.936 0.953 0.76 0.50 0.46 0.37
Car 0.837 0.867 0.878 0.901 0.99 0.83 0.60 0.50
Chair 0.736 0.837 0.867 0.894 0.89 0.55 0.44 0.39
Display 0.812 0911 0.930 0.946 0.78 041 0.34 0.31
Lamp 0.567 0.741 0.807 0.820 1.44 0.68 0.50 0.50
Loudspeaker 0.831 0.899 0.923 0.933 1.14 0.72 0.54 0.48
Rifle 0.680 0.801 0.850 0.862 0.63 0.36 0.27 0.25
Sofa 0.873 0.921 0.937 0.952 0.69 0.47 0.38 0.33
Table 0.757 0.858 0.880 0.913 0.70 0.44 0.38 0.33
Telephone 0.897 0.946 0.953 0.968 0.46 0.29 0.26 0.23
Vessel 0.736 0.840 0.880 0.893 0.91 0.51 0.37 0.33
mean 0.772 0.859 0.884 0.905 0.82 0.50 0.40 0.35
NC 1 F-score 1
Method ONet [8] ConvONet [10] POCO[I] ALTO ONet[8] ConvONet[I0] POCO][I] ALTO
Airplane 0.894 0.922 0.920 0.933 0.850 0.946 0.970 0.976
Bench 0.882 0911 0.902 0.925 0.849 0.943 0.956 0.979
Cabinet 0.925 0.949 0.945 0.957 0.852 0.939 0.951 0.972
Car 0.904 0.885 0.867 0.889 0.763 0.819 0.868 0.912
Chair 0.893 0.931 0.930 0.946 0.753 0.902 0.943 0.965
Display 0.930 0.961 0.962 0.970 0.805 0.956 0.976 0.984
Lamp 0.820 0.885 0.895 0.905 0.606 0.845 0.924 0.926
Loudspeaker 0.914 0.929 0.928 0.936 0.740 0.863 0.908 0.926
Rifle 0.859 0.916 0.928 0.936 0.828 0.957 0.984 0.987
Sofa 0.937 0.950 0.950 0.960 0.846 0.932 0.961 0.974
Table 0.918 0.950 0.949 0.961 0.842 0.947 0.964 0.979
Telephone 0.972 0.980 0.979 0.984 0.940 0.983 0.990 0.994
Vessel 0.866 0.906 0913 0.923 0.740 0.899 0.952 0.961
mean 0.901 0.929 0.928 0.940 0.801 0.918 0.950 0.964

Table F. Performance on ShapeNet with input noisy point cloud 1K. Boldface font represents the preferred results.

As our method is general in encoding 3D point features, it can be generalized to not just occupancy fields, but also radiance

fields trained from images. Similarly, it can be applied to a broader range of neural fields such as semantic field [

affordance field [4].

] and



IoU 1 Chamfer-L; |

Method ONet [8] ConvONet [10] POCOT[I] ALTO ONet[8] ConvONet[I0] POCOT[I] ALTO
Airplane 0.760 0.782 0.744 0.825 0.57 0.48 0.57 0.39
Bench 0.716 0.743 0.707 0.801 0.60 0.50 0.56 0.39
Cabinet 0.867 0.900 0.889 0.927 0.73 0.52 0.58 0.46
Car 0.834 0.843 0.817 0.867 0.99 0.76 0.83 0.67
Chair 0.736 0.787 0.776 0.840 0.89 0.67 0.71 0.52
Display 0.817 0.885 0.878 0.917 0.76 0.47 0.49 0.38
Lamp 0.567 0.663 0.681 0.747 1.38 1.02 0.93 0.76
Loudspeaker 0.827 0.870 0.867 0.901 1.16 0.78 0.79 0.64
Rifle 0.691 0.757 0.742 0.801 0.61 043 0.45 0.35
Sofa 0.872 0.898 0.893 0.926 0.69 0.52 0.53 0.42
Table 0.758 0.813 0.794 0.868 0.72 0.52 0.57 0.42
Telephone 0.916 0.939 0.927 0.952 0.41 0.31 0.33 0.27
Vessel 0.748 0.797 0.795 0.846 0.85 0.63 0.60 0.47
mean 0.778 0.821 0.808 0.863 0.80 0.59 0.61 0.47
NC 1 F-score 1
Method ONet [8] ConvONet [10] POCO[I] ALTO ONet[8] ConvONet[I0] POCOI[I] ALTO
Airplane 0.897 0.901 0.867 0.914 0.864 0.902 0.867 0.938
Bench 0.878 0.886 0.864 0.906 0.860 0.912 0.882 0.947
Cabinet 0.916 0.931 0.917 0.943 0.856 0.916 0.896 0.943
Car 0.875 0.864 0.835 0.873 0.757 0.810 0.766 0.850
Chair 0.889 0.905 0.885 0.923 0.754 0.850 0.833 0.910
Display 0.926 0.947 0.938 0.956 0.813 0.926 0.916 0.957
Lamp 0.813 0.853 0.834 0.875 0.618 0.771 0.781 0.857
Loudspeaker 0.897 0911 0.897 0.916 0.737 0.832 0.819 0.871
Rifle 0.863 0.890 0.883 0.909 0.838 0.919 0.918 0.952
Sofa 0.928 0.935 0.924 0.946 0.846 0.906 0.899 0.941
Table 0.917 0.933 0.917 0.945 0.839 0.913 0.894 0.947
Telephone 0.970 0.975 0.970 0.978 0.942 0.975 0.971 0.984
Vessel 0.860 0.879 0.867 0.898 0.758 0.850 0.851 0.909
mean 0.895 0.908 0.892 0.922 0.806 0.883 0.869 0.924

Table G. Performance on ShapeNet with input noisy point cloud 300. Boldface font represents the preferred results.

Ch-L;] F-scoref NCT

SAP [9] 0.34 0.975 0.944
ALTO 0.30 0.980 0.952

Table H. Comparison with additional baseline: SAP [9]

Ch-L;] NCt FS(n)t FSQ@n)t

SA-ConvONet [13]  0.495  90.04  93.85 98.82
ALTO 0.348 92.03 98.23 99.63

Table I. Comparison with additional baseline: SA-ConvONet [13]

noise level 0 noise level 0.25
Method Chamfer-L1] F-scoref NCt{ Chamfer-L;] F-scoref NC?T
ConvONet [10] 0.40 0.958 0.929 0.66 0.849 0.913
POCO [1] 0.28 0.983 0.958 0.66 0.846 0.893
ALTO 0.27 0.984 0.958 0.53 0.901 0.918

Table J. Performance comparison on different noise levels on ShapeNet dataset with 3K input points.



(a) Ground Truth (b) Input Points (c) ConvONet [10] (d) POCO [1] (e) ALTO

Figure A. Qualitative comparison on object-level reconstruction ShapeNet dataset. Trained and tested on 3k noisy points.

(a) Ground Truth (b) Input Points (c) ConvONet [10] (d) POCO [1] (e) ALTO

Figure B. Qualitative comparison on object-level reconstruction ShapeNet dataset. Trained and tested on 300 noisy points.



(a) Ground Truth (b) Input Points (c) ConvONet [10] (d) POCO [1] (e) ALTO

Figure C. Qualitative comparison on scene-level reconstruction Synthetic Room dataset. Trained and tested on 10k noisy points.
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(a) Ground Truth (b) Input Points (c) ConvONet [10] (d) POCO [1] (e) ALTO

Figure D. Qualitative comparison on scene-level reconstruction Synthetic Room dataset. Trained and tested on 3K noisy points.



(a) Ground Truth

(b) Input Points

(c) ConvONet [10] (d) POCO [1] (e) ALTO

Figure E. Qualitative comparison on scene-level reconstruction ScanNet.

Methods Links

SPSR [5] https://github.com/mmolero/pypoisson

ONet [8] https://github.com/autonomousvision/occupancy_networks

ConvONet [10] https://github.com/autonomousvision/convolutional_occupancy_networks
DP-ConvONet [6] https://github.com/dsvilarkovic/dynamic_plane_convolutional_onet
POCO [1] https://github.com/valeoai/POCO

Table K. The link for the baseline methods we compare.


https://github.com/mmolero/pypoisson
https://github.com/autonomousvision/occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/dsvilarkovic/dynamic_plane_convolutional_onet
https://github.com/valeoai/POCO
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