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0.1. Derivation of projection model

Below is an expanded version of Section 4.1 with the full
derivation of the projection model.

A 3D point P = (X,Y, Z) projects to pixel coordinates
(u0, v0), (u1, v1) in the two images. Assuming that radial
distortion has been corrected for and that intrinsics (focal
lengths fi and principal points cxi

, cyi
) are known, we con-

vert to normalized image coordinates xi = (ui − cxi)/fi,
yi = (vi − cyi)/fi.

Under the above assumptions the cameras are located at
t0 = [0 0 0]T and t1 = [1 0 0]T , and their rotations are
R0 = R(ω0) and R1 = R(ω1). We use a linear approxi-
mation for the rotations since we expect the rotational cor-
rections to be small:
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In normalized image coordinates, point P projects into the
left camera at
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Parametrizing by inverse depth (disparity) d = 1/Z we can
“unproject” the point
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Projecting it into the right camera, we get
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where ∆ω = ω1 − ω0 is the relative orientation of the two
cameras. We can see that for d = 0 (i.e., a point at infinity),
we can only recover the relative orientation ∆ω. For closer
points (d < 0) we also get a constraint for absolute roll and
absolute pan, but not absolute pitch, as discussed earlier.

If we use ∆x = x1 − x0 as our estimate for d and also
introduce a scale correction (1 + ∆f ), we have x1
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Cross-multiplying and dropping higher-order terms we
get two equations in the 6 unknowns, where ∆y = y1 − y0:
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Of these, only the second equation gives us a constraint

relating y0 and y1. We can collect these equations, one for
each matched feature point, and solve the over-constrained
system using robust least squares.
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