
A. Proofs
A.1. Proof of Corollary 1

Before we prove Corollary 1, We first introduce the following lemma.

Lemma 1. For 0 < q < p, the following inequality holds:
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m + 1

n = 1,

X

i

|ui||vi| 
 
X

i

|ui|m
! 1

m
 
X

i

|vi|n
! 1

n

. (14)

If we take |ui| = |xi|q , vi = 1, m = p
q and n = p
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By taking the power of 1
q on both sides, we have
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which concludes the proof.

Corollary 1. Given a twice-differentiable classifier f : Rd ! Rk
, and its attribution gy on label y, assume that gy is

locally linear within the neighborhood of x, B"(x) = {x+ �|k�kp  "}, then for all perturbations k�kp  " that p > 2,
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1
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p ⇠max", where ⇠max is the largest singular value of H = rgy(x).

Proof. Using Lemma 1, we have k�k2  d
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p k�kp. Similar to the proof of Theorem 1,
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Therefore,
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A.2. Proof of Theorem 2
Theorem 2. Given a twice-differentiable classifier f , its attribution on label y, gy , and the gradient H = rgy , assume that

gy is locally linear within the neighborhood of x, B"(x) = {x+ �|k�k1  "}, then for all perturbations k�k1  ",
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where P = HH>
and the equality is taken at � = (±", . . . ,±")>.

Proof. Recall that under the local linearity assumption,
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Since Pij  |Pij | and �i�j  k�k21  "2 for all i, j, we can easily prove the theorem that
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A.3. Proof of Proposition 1
Proposition 1. Denote the gradient-based attribution satisfying the completeness axiom of x on ground truth label y by

gy(x), and the attribution on a different label y0 by gy
0
(x). Given the perturbation �, assume that gy is locally linear within

the neighborhood of x, B"(x) = {x+ �|k�kp  "}, the classification result of x+ � does not change from y to y0 if

⇣⇣
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0
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� < fy(x)� fy0(x), (8)

where � is an all one vector, � = (1, . . . , 1)> 2 Rd
.

Proof. Recall that we denote the gradient-based attribution satisfying the completeness axiom of x on target label y by gy(x),
e.g., integrated gradients. Similarly, we denote the attribution on a different label y0 by gy

0
(x). Given the perturbation �,

according to the above assumption, we can write that

gy(x+ �) = gy(x) +rgy(x)>� (21)

Similarly, the approximation of gy
0
(x+ �) is given by:
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According to the completeness axiom, given an all one vector � = (1, . . . , 1)>, we have

�>gy(x) = fy(x). (23)

Consider the perturbation �, if � does not change the label of x from y to y0, then fy0(x+ �) < fy(x+ �), i.e.,
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By rearranging the above inequality, we have
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A.4. Proof of Corollary 2
Corollary 2. Given a twice-differentiable classifier f : Rd ! Rk

and its attribution gy on label y, for all perturbations

k�kp  ", if the Euclidean distance of gy(x + �) and gy(x) is upper bounded by T (";x), and 0  T (";x)  kgy(x)k2,

then their cosine distance (Dc) is upper bounded by
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Proof. The corollary can be proved using the geometric property (see Fig. 1a) that
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Figure 3. Values of ⌘ for different k�k1 computed from CIFAR-10 using integrated gradients. The magnitudes are ranging from 0.07 to
0.09 and are negligible comparing with the average norm of attributions which is 3.47 on CIFAR-10.

B. Analysis of local linearity assumption
B.1. Evaluation of local linearity assumption of attribution functions

The theories of this work are based on the local linearity assumption that gy(x) is linear within B"(x) = {x+ �|k�kp 
"}. It is worth noting that such local linearity is a valid assumption for smooth functions, which can be achieved by both
adversarial and attributional robust methods. Adversarial defense methods look for locally linearity functions to reduce the
impact of adversarial attacks [22, 35]. Similarly, attributional defense methods train for smooth gradients to defend against
attribution attacks [33]. It is also a common practice in related literature [7, 11, 16, 27, 38] to make similar assumptions.

Furthermore, the validity of this assumption also depends on the size of �. The perturbation � is restricted within a small
`p ball around x to ensure that the perturbed images are visually indistinguishable comparing to its original counterpart. The
maximum allowable size " for � is relatively small compared with the intensity range of the original image. When � is small,
the remainder of the Taylor series of gy(x) is negligible and the local linearity assumption is valid. As shown in Figure 3,
the value of ⌘(x, �) = kgy(x)� gy(x+ �)� �>rgy(x)k2 is small and negligible when k�k1 is small.

B.2. Generalization of Theorem 1
Theorem 3. Given a twice-differentiable classifier f : Rd ! Rk

, and its attribution gy on label y, denote the Taylor series

of gy(x+ �) as gy(x) + �>rgy(x) +R1(x). If �(c� 1)�>rgy(x) � R1(x) � (c� 1)�>rgy(x) for a constant c � 1,

where � refers to element-wise less than or equal to, then for all perturbations k�k2  ",

kgy(x+ �)� gy(x)k2  c⇠max",

where ⇠max is the largest singular value of H = rgy(x).

Proof. Based on the Taylor series of gy(x) and the above condition, we have
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where �max is the largest eigenvalue of P = HH> = rgy(x)rgy(x)>, and vmax is the corresponding eigenvector. The
equality in Eq. 33 is achieved when � is "vmax or �"vmax. Since the singular values of H are equal to the square root of the
eigenvalues of P , then,

kgy(x+ �)� gy(x)k2  c
p
�max" = c⇠max". (34)

This is a generalized version of Theorem 1 that is applicable for all twice-differentiable classifiers. Under local linearity
assumption, R1(x) = 0, which means c = 1, the result coincides with the original version of Theorem 1.

B.3. Derivation of Eq. (11)
By Taylor expansion, gy(x+ �)� gy(x) = �>rgy(x) +R1(x), where R1 is the first order Taylor remainder. Thus, we

have
kR1(x)k2 � kgy(x+ �)� gy(x)k2 � k�>rgy(x)k2 (35)
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and it would be the worst-case for the linear assumption when � = "vmax. By taking "vmax as �, kR1(x)k2 can be estimated
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C. Analysis of attribution gradients
C.1. The gradient of integrated gradients

We provide the justification showing that the gradient of IG is diagonal-dominated. Consider that
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Figure 4. The first 100 dimensions of gradient attribution generated from (a) MNIST and (b) Fashion-MNIST.

In matrix form,
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If we use softplus as an activation function, i.e., g(x) = 1
� log(1 + exp(�x)), then,

g00(x) =
�e�x

(e�x + 1)2
(46)

and
lim
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g00(x) = 0 (47)

As � ! 1, H(↵) will tend to 0, and the second term in Eq. 45 will tend to 0. At the same time, if we choose the number of
steps in IG, m larger, ↵

m2 will converge to 0 faster than 1
m . Therefore, rIG will be diagonal-dominated.

C.2. Additional visualization of attribution gradients
We provide the first 100-dimensions heatmaps of absolute values of attribution gradients, i.e., gradients of IG, on MNIST

and Fashion-MNIST in addition to CIFAR-10 presented in Fig. 1b. Moreover, the complete heatmaps for all the three datasets
are also presented. As observed in Figs. 4 to 7, the matrices of attribution gradients are diagonal-dominant.

D. Additional experimental results
D.1. Additional results of upper bound on more models without the label constraint

In this subsection, we evaluate the proposed upper bound without the label constraint for the other models, apart from
TRADES+IGR in the paper. The perturbation size is chosen to be 0.1 for all evaluations. As in Sec. 5, we use Theorem 1
and 2 to compute Te = ⇠max" and extend it to Tc using Eq. 10. The modified upper bound T 0

e = c⇠max" is also provided
to address the inaccurate Taylor approximation (less than 1%). bTe and bTc are computed from the corresponding average
attribution differences. The results are given in Table 6. It is shown that the sample distances under both Euclidean and
cosine metrics are bounded by T 0

e and Tc as expected. All the distortion caused by the attacks i.e., bTe and bTc are smaller than
T 0
e and Tc.



Figure 5. The full heatmap of attribution gradients of MNIST in size 784⇥ 784.

Table 6. Evaluation of upper bounds without the label constraint. The cosine distance values bTc and bT 0
c are converted to degrees for easier

comparison.

SM Input*gradient IG

`2 bTe Te T 0
e

bTc Tc
bTe Te T 0

e
bTc Tc

bTe Te T 0
e

bTc Tc

AT 0.44 0.94 0.98 9.19 14.87 0.07 0.63 0.63 1.17 4.34 0.04 0.25 0.25 2.73 4.77
IG-NORM 0.03 0.70 0.79 4.33 9.06 0.03 0.50 0.52 1.40 4.75 0.01 0.16 0.16 1.65 4.37
AdvAAT 0.30 1.83 1.83 11.24 20.44 0.08 0.66 0.67 1.84 3.79 0.04 0.24 0.24 0.28 3.82
ART 0.18 0.79 0.81 10.88 14.21 0.09 0.92 0.97 0.83 6.06 0.07 0.23 0.23 0.59 4.21
TRADES 0.11 0.76 0.76 10.01 18.40 0.05 0.48 0.48 1.19 3.20 0.03 0.17 0.17 1.91 3.87

`1

AT 0.55 1.27 - 23.47 30.18 0.63 0.73 - 9.28 61.03 0.41 0.76 - 26.62 45.32
IG-NORM 0.42 0.70 - 25.16 32.60 0.21 0.70 - 6.88 42.94 0.20 0.48 - 21.63 35.30
AdvAAT 0.64 1.83 - 25.20 31.25 0.07 0.74 - 7.79 45.16 0.23 0.52 - 28.73 39.40
ART 0.49 1.01 - 23.81 35.17 0.27 0.79 - 10.21 48.30 0.31 0.67 - 31.01 35.64
TRADES 0.39 0.75 - 22.40 29.10 0.33 0.69 - 9.17 52.63 0.23 0.50 - 22.98 36.38

D.2. Ablation study of upper bound using different "
In this subsection, we provide more experimental results of the proposed bound on MNIST, Fashion-MNIST and CIFAR-

10 in both `2 and `1 cases under label constraint. More specifically, for MNIST and Fashion-MNIST, we additionally



Figure 6. The full heatmap of attribution gradients of Fashion-MNIST in size 784⇥ 784.

provide results of " = 0.1 and " = 0.2 in `2 case, and " = 0.01 and " = 0.03 in `1 case. For CIFAR-10, we provide " = 0.2
and " = 0.3 for `2 case, and " = 4/255 and " = 8/255 in `1 case. The results are presented in Tabs. 7 and 8. For `2
constrained case, we also provide the modified upper bound T 0

e as in Sec. 5 since the Taylor approximations are inaccurate
occasionally (0 ⇠ 6%). For all tested ", it is noticed that the theoretical bounds bound the sample Euclidean and cosine
distance above. In some cases, the means of Te and T 0

e are the same because Te bound bTe well and the c in Eq. (11) equals to
1 for T 0

e. As in Sec. 5, for `1 case, we do not present the results of T 0
e, because Te has bounded all bTe above.

D.3. Evaluation of upper bounds under `2-norm and `1-norm constraints on larger size images.

The proposed method is also scalable to larger size images. In this subsection, we provide experimental results on Flower
[20], which contains images of size of 128⇥128⇥3, and a subset of ImageNet [5] containing 5,000 randomly chosen images
with size of 224⇥ 224⇥ 3. We choose " = 0.1 for `2 and " = 8/255 for `1 cases to compute the theoretical upper bounds
Te and Tc, as well as the modified bound T 0

e, as introduced in Sec. 5. The sample distance bTe and bTc are computed from the
mean of distances between perturbed and original attributions, where PGD-20 is used as `2 attack and 200-step IFIA is used
as `1 attack. In paricular, since the baseline attribution robustness methods do not scale up to ImageNet, we only provide
results using standard training and adversarial training to illustrate the scalability of our method. The results are presented in
Tabs. 9 and 10.

We notice that the theoretical bounds are all valid for larger size images, where all angular and modified Euclidean bound
effective bound the maximum discrepancy of perturbed attributions. It worths noting that the computation costs of the values
for the upper bound in `2-norm constrained case become heavier for high-dimensional images due to the computation of
eigenvalues for large matrices. For `1-norm case, these eigenvalue computations have been avoided. We will study the



Figure 7. The full heatmap of attribution gradients of CIFAR-100 in size 3072⇥ 3072.

Table 7. Evaluation of `2-norm upper bound with the label constraint on MNIST, Fashion-MNIST and CIFAR-10 using different ".

bTe Te T 0
e

bTc(deg) Tc(deg) bTe Te T 0
e

bTc(deg) Tc(deg)

MNIST " = 0.1 " = 0.2

AT 0.0856 0.3074 0.3101 4.6026 14.3020 0.1176 0.4611 0.4617 5.9845 29.6082
IG-NORM 0.1436 0.5776 0.5776 3.9514 14.6430 0.2094 0.8664 0.8679 5.4824 30.3707
AdvAAT 0.0938 0.7182 0.7193 2.1315 13.8325 0.1346 1.0773 1.1013 2.8725 28.5660
ART 0.2031 0.6538 0.6542 6.4244 13.9011 0.2302 0.9807 0.9993 8.5982 28.7175
TRADES 0.2159 1.0120 1.0812 3.4791 14.1049 0.3281 1.5180 1.5211 4.9429 29.1695
TRADES+IGR 0.2171 0.9928 1.0101 3.4171 14.0621 0.3032 1.4892 1.4892 4.5166 29.0745

Fashion-MNIST " = 0.1 " = 0.2

AT 0.1080 0.1400 0.1401 16.7770 26.6451 0.1413 0.2100 0.2119 21.3901 63.7570
IG-NORM 0.1232 0.3578 0.3578 8.9312 17.8256 0.1771 0.5367 0.5371 12.5177 37.7516
AdvAAT 0.1500 0.3470 0.3533 7.3499 19.0014 0.1984 0.5205 0.5209 9.4643 40.6308
ART 0.2057 0.2774 0.2775 11.6920 19.9515 0.2343 0.4161 0.4161 13.4216 43.0352
TRADES 0.0797 0.1926 0.1987 10.5544 24.7845 0.1050 0.2889 0.2889 13.8358 56.9729
TRADES+IGR 0.0672 0.0906 0.0906 11.3338 17.9020 0.0879 0.1359 0.1510 14.7998 37.9358

CIFAR-10 " = 0.2 " = 0.3

AT 0.0607 0.5064 0.5064 3.7975 9.5783 0.0858 1.2661 1.2661 5.2981 24.5816
IG-NORM 0.0123 0.3164 0.3164 1.4311 8.7679 0.0592 0.7910 0.7910 6.9460 22.4006
AdvAAT 0.0300 0.4772 0.4775 1.7094 7.6575 0.0548 1.1933 1.1933 3.0553 19.4588
ART 0.0501 0.4556 0.4699 3.1004 8.4476 0.0718 1.1391 1.1420 6.3493 21.5468
TRADES 0.0360 0.3468 0.3468 3.9435 7.7550 0.0528 0.8671 0.8780 5.7514 19.7151
TRADES+IGR 0.0395 0.3384 0.3385 4.1222 7.6942 0.0577 0.8460 0.8460 5.9201 19.5551



Table 8. Evaluation of upper bounds under `1-norm constraint and label constraint on MNIST, Fashion-MNIST and CIFAR-10 with
different ".

bTe Te
bTc(deg) Tc(deg) bTe Te

bTc(deg) Tc(deg)

MNIST " = 0.01 " = 0.03

AT 0.0556 0.1550 2.9408 7.1839 0.0888 0.4651 4.2516 22.0345
IG-NORM 0.1005 0.2409 2.8745 6.0632 0.1710 0.7228 4.4179 18.4742
AdvAAT 0.0608 0.4398 1.4264 5.0839 0.1280 1.3195 2.4883 15.4170
ART 0.0767 0.5644 2.8025 10.3833 0.3617 1.6931 9.3505 32.7312
TRADES 0.1634 0.4443 2.7539 6.3323 0.3193 1.3330 4.7523 19.3224
TRADES+IGR 0.1744 0.4077 2.7731 5.1333 0.2932 1.2232 4.2425 15.5702

Fashion-MNIST " = 0.01 " = 0.03

AT 0.0516 0.0560 6.5146 9.4467 0.1043 0.1680 16.4165 29.4979
IG-NORM 0.0611 0.1113 4.7737 8.3315 0.1137 0.3339 8.1315 25.7661
AdvAAT 0.0987 0.1841 5.3706 8.1184 0.1616 0.5523 7.9204 25.0658
ART 0.0660 0.1443 6.6582 9.2791 0.3946 0.4329 23.0589 28.9294
TRADES 0.0509 0.0907 7.0612 9.0233 0.0804 0.2721 10.8579 28.0672
TRADES+IGR 0.0363 0.0505 7.1214 8.0541 0.0716 0.1515 12.1090 24.8550

CIFAR-10 " = 4/255 " = 8/255

AT 0.0894 0.1200 6.0843 6.4041 0.1549 0.2400 10.5129 12.8901
IG-NORM 0.0388 0.0750 4.5743 5.2004 0.0700 0.1501 8.1882 10.4443
AdvAAT 0.0776 0.0817 2.2657 5.7139 0.0959 0.1635 3.8595 11.4857
ART 0.0722 0.1056 4.3010 5.2445 0.1281 0.2113 8.4555 10.5337
TRADES 0.0539 0.0784 3.6093 5.3381 0.0909 0.1569 9.3571 10.7232
TRADES+IGR 0.0589 0.0821 3.8230 5.1622 0.0978 0.1643 9.5879 10.3668

Table 9. Evaluation of upper bounds with the label constraint on Flower dataset. The numbers in the brackets indicate the percentages that
attacked attribution is outside the Te.

`2 `1

bTe Te T 0
e

bTc(deg) Tc(deg) bTe Te
bTc(deg) Tc(deg)

AT 0.0170 0.0341 [2.17%] 0.0447 1.3165 1.9806 0.0238 0.4100 2.1937 13.4811
AdvAAT 0.0295 0.1424 [0.00%] 0.1424 1.5568 2.2835 0.0472 0.1025 1.4130 11.8732
TRADES 0.0220 0.0534 [0.72%] 0.0592 1.3383 3.1567 0.0182 0.1081 3.3887 11.9829
TRADES+IGR 0.0080 0.0219 [0.72%] 0.0262 0.8870 2.1255 0.0242 0.2873 1.5930 12.5584

Table 10. Evaluation of upper bounds with the label constraint on ImageNet. The numbers in the brackets indicate the percentages that
attacked attribution is outside the Te.

`2 `1

bTe Te T 0
e

bTc(deg) Tc(deg) bTe Te
bTc(deg) Tc(deg)

CE 0.1049 0.1923[3.06%] 0.2365 7.7959 8.0933 0.3148 0.7399 3.8227 10.9339
AT 0.1077 0.1588[3.32%] 0.5221 3.4773 5.1797 0.1974 0.2226 0.3455 8.7333

scalability of our methods under `2-norm constraint in future work.
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Figure 8. Distributions of differences between computed bounds and attribution differences from CIFAR-10.

E. Alternative formulation of upper bound to the worst-case attribution deviations
The formulation of Eq. 1 can be rewritten in an equivalent form to find the maximum " subject to the attribution difference

under certain threshold !. Formally, the formulation can be written as

max "

s.t. D(gy(x), gy(x+ �))  !

k�kp  "

argmax
k

fk(x) = argmax
k

fk(x+ �)

(48)

Under the above formulation, we can use the theoretical bound derived using Eq. 1 to find the corresponding optimal ".
For the `2-norm case with or without the label constraint, when D(·, ·) is the `2 distance, the maximum " can be computed
using the upper bound ⇠max" derived in Theorem 1,

max
�

kgy(x+ �)� gy(x)k2 = ⇠max"  ! (49)

) "  !

⇠max
(50)

Similarly, the maximum " when D(·, ·) is cosine distance can be derived using Corollary 2 as

max
�

Dc(g
y(x+ �), gy(x)) = 1�

s

1� ⇠max"

kgy(x)k22
 ! (51)

) "  kg(x)k22
⇠max

�
1� (1� !)2

�
(52)

The maximum " for the `1 constraint case with and without the label constraint can be also derived in the same way
using the relaxed upper bound in Theorem 2. Since the Kendall’s rank correlation is discontinuous, researchers proposed to
use cosine similarity and `p distance to measure the similarity/dissimilarity between attributions from attacked samples and
original samples [3, 4, 32]. Thus, in this work, we derive the bounds for cosine similarity and Euclidean distance.


