
Supplementary Material

A. Proof of the Proposition
Proposition 1. For downstream datasets, we can hardly
learn new information about the input when most features
are frozen, then if we learn representation znew in a way
that information is lost, i.e., I(znew, x) < I(z, x), the rep-
resentation will also lose information about the label y2 as
I(znew, y2) < I(z, y2).

Proof. According to the assumption. 1 and 2, we have:

I(z, x) = I(z, y1) = I(z, y2)

I(znew, x) = I(znew, y1) = I(znew, y2)
(S-1)

As I(znew, x) ≤ I(z, x) holds, then we can achieve
I(znew, y2) < I(z, y2) naturally.

Proposition 2. For z1, z2 ∈ RN , the mutual informa-
tion I(z1, z2) equals to I(z1, z1) when the mapping z2 =
fψ(z1), fψ : RN → RN is invertible and smooth.

Proof. When the mapping z2 = fψ(z1), fψ : RN → RN
is invertible and smooth, this means z1 → z2 is a one-to-
one mapping. Then I(z1, z2) = H(z1). For variable z1,
I(z1, z1) = H(z1), we have I(z1, z2) = I(z1, z1).

Proposition 3. When ln
∣∣∣det ∂f∂z ∣∣∣ ≤ 0 holds, the Lipschitz

constant for f will meet the constrain as K(f(·)) ≤ 1.

Proof. Here, we consider our used planar flow. The log
Jacobian for planar transformation is

ln

∣∣∣∣det ∂f∂z
∣∣∣∣ = ln

∣∣I + λT · h′(γT · z + β) · γ
∣∣ (S-2)

When ln
∣∣∣det ∂f∂z ∣∣∣ ≤ 0 holds, we have −2 ≤ λT ·h′(γT ·z+

β) ·γ ≤ 0. Considering two input z1 > z2, we have f(z1)−
f(z2) = z1 − z2 + λ ·

[
h(γT · z1 + β)− h(γT · z2 + β)

]
.

As the gradient of λ · h(γT · z + β) has the constraint, then
λ ·

[
h(γT · z1 + β)− h(γT · z2 + β)

]
is also constrained

following 1st order approximation. Thus we have

z2 − z1 ≤ f(z1)− f(z2) ≤ z1 − z2 (S-3)

This means for any z1, z2, the constrain is:

K(f(·)) = ||f(z1)− f(z2)||
||x1 − x2||

≤ 1 (S-4)

In this way the constrain K(f(·)) ≤ 1 holds.

B. Datasets and Implementation Details

Datasets. We introduce the details of our used datasets in
Tab. S-1.
Augmentation. For VTAB-1k and domain generalization,
we follow its default augmentation settings, implement-
ing the resizing and normalization for input images. For
few-shot learning and other FGVC datasets, different from
NOAH, which uses strong augmentation, such as color-
jitters and RandAugmentation, we employ very simple ran-
dom center crop and random horizontal flip.
Hyper-parameters. The batch-size is set as 128 for all the
experiments and the learning rate for Few-shot and FGVC
datasets is 2×10−3, while the learning rate for ImageNet is
5×10−4. For VTAB-1k, we follow VPT [12] and search for
a superior hyper-parameter (learning rate and weight decay)
from a learning rate list:{1× 10−3,2× 10−3,5× 10−5,5×
10−3,1×10−2,5×10−2} and weight decay list: {1×10−2,
5× 10−3,1× 10−3, 1× 10−4,5× 10−5}.

C. Extension Experiments

C.1 Attention Map

We further visualize the attention map in Fig S-1. The
model is fine-tuned with SNF-shallow or linear layer on
ImageNet-1k with 16 examples per-class training. The top-
1 accuracy for linear probing is 70.7 and the top-1 accuracy
for SNF-shallow is 78.5. Obviously, SNF can adjust the
feature attention with information-keeping adaption on the
shortcut.

C.2 With or without regularization on log Jacobian.

We perform ablation studies to verify the effectiveness
of the regularization on log Jacobian and the results on Cal-
tech101 (VTAB-1k). As illustrated in Tab. S-3. We notice
that our approach can already achieve great performance
without regularizing on log Jacobian, and the model will ac-
tively reduce the log Jacobian during the adapting process to
reduce error propagation, as shown in Fig. S-2. The above
phenomenon confirms our analysis of error propagation. In
Tab. S-3, we also show that explicitly imposing regulariza-
tion on log Jacobian can further improve performance.



Table S-1. Specifications of datasets evaluated. Different from VPT [12], the val-train split is only employed for VTAB-1k benchmark.

Dataset Description #Classes Train Val Test

Fine-grained visual recognition tasks (FGVC)
CUB-200-2011 [29] Fine-grained bird species recognition 200 5,994 - 5,794
NABirds [27] Fine-grained bird species recognition 555 23,929 - 24,633
Oxford Flowers [23] Fine-grained flower species recognition 102 2,040 - 6,149
Stanford Dogs [15] Fine-grained dog species recognition 120 12,000 - 8,580
Stanford Cars [7] Fine-grained car recognition 196 8,144 - 8,041

Visual Task Adaptation Benchmark (VTAB-1k)
Cifar100 [17]

Natural

100

800/1000 200

10,000
Caltech101 [6] 102 6,084
DTD [4] 47 1,880
Oxford-Flowers102 [22] 102 6,149
Oxford-Pets [24] 37 3,669
SVHN [21] 10 26,032
Sun397 [31] 397 21,750
Patch Camelyon [28]

Specialized

2

800/1000 200

32,768
EuroSAT [9] 10 5,400
Resisc45 [3] 45 6,300
Retinopathy [14] 5 42,670
Clevr/count [13]

Structured

8

800/1000 200

15,000
Clevr/distance [13] 6 15,000
DMLab [1] 6 22,735
KITTI-Dist [8] 4 711
dSprites/location [20] 16 73,728
dSprites/orientation [20] 16 73,728
SmallNORB/azimuth [18] 18 12,150
SmallNORB/elevation [18] 9 12,150

Few-shot Learning
Food-101 [2] Daily fine-grained food recognition 101

(1/2/4/8/16)*(#Classes)

- 25,250
Stanford Cars [16] Daily fine-grained car recognition 196 - 8,041
Oxford-Flowers102 [22] Daily fine-grained flower species recognition 102 - 6,149
FGVC-Aircraft [19] Daily fine-grained Aircraft species recognition 100 - 3,333
Oxford-Pets [24] Daily fine-grained pet species recognition 37 - 3,669

Domain Generalization
ImageNet-V2 [25]

Variants of ImageNet with domain shifts

1000 - - 10,000
ImageNet-Sketch [30] 1000 - - 50,889
ImageNet-A [11] 1000 - - 7,500
ImageNet-R [10], 1000 - - 30,000

Other Visual Recognition Tasks
ImageNet [5] Other general visual recognition 1,000 16*(#Classes) 50,000 150,000
Cifar-100 [17] 100 50,000 - 10,000

C.3 Whether using affine as the first layer.

The shallow SNF is an affine transformation of the short-
cut connection following [26]. However, it is not necessary
and we can replace the affine transformation with the pla-
nar transformation used in SNF-deep. As shown in Tab. S-2,
using affine or not has almost no difference in accuracy.

C.4 Feature Visualization

As shown in Fig S-3, We visualize the feature distribu-
tion learned from the pretrained model and SNF-shallow via
t-SNE on the Cifar-100 dataset. It reveals SNF-shallow can
achieve impressive feature clustering results compared with
the pretrained backbone by adapting the shortcut with only



(a) Origin (b) Linear (c) SNF-shallow (a) Origin (b) Linear (c) SNF-shallow 

Figure S-1. The attention for images sampled from val split of ImageNet. (a) The origin image (b) The attention map of the linear probing
(c) The attention map of our SNF-shallow.



Table S-2. Whether using affine as the first layer.

Methods Caltech101 Cifar100
SNF-s SNF-d SNF-s SNF-d

w/ affine 93.5 94.0 84.3 84.0
w/o affine 93.6 94.0 83.9 84.2

Figure S-2. The accuracy and log Jaco-
bian curve when no constraint on log Ja-
cobian is added in the loss function.

Method w/ w/o

SNF-s 93.5 93.1
SNF-d 94.0 93.5

Table S-3. The perfor-
mance on Caltech101
(VTAB-1k) when with
or without log Jaco-
bian constrain.

(a) ImageNet-21k pretrained (b) SNF-shallow

Figure S-3. t-SNE visualization of the feature learned by pre-
trained backbone and SNF-shallow respectively. Different colors
represent different ground truth labels.

Table S-4. More ablation studies on different backbones and dif-
ferent layer lengths.

ViT-L ResNet-50
Methods Cifar100 Caltech101 Cifar100 Caltech101

Linear 64.7 91.8 33.3 86.2
Full 75.7 92.1 43.9 89.1
SNF-s 83.0 92.5 44.7 88.8
3-layer 84.3 93.2 48.0 89.4
SNF-d 85.4 93.2 49.3 89.5
7-layer 85.5 93.3 50.0 89.7

0.036 M parameters,

C.5 More ablation studies on different backbones
and layer lengths

We further provide more ablation studies on different
backbones and layer lengths using Caltech101 and Ci-
far100. Results are shown in Tab. S-4.

D. Limitation and Future Work
The assumptions in this work is not rigorously proven,

which is also prohibitive in deep learning. We present these
assumptions and derive SNF to adapt the feature distribu-
tion without losing information. The success of SNF can
verify our assumptions to some extent. However, it still
leaves an challenging problem for future research that how
can we adapt the model with few parameters when the in-
formation captured by the pre-trained model is not enough.
Maybe we can use small networks to adapt the pre-trained
model as well as learn new information from target data.
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