
Supplementary Material for
Are We Ready for Vision-Centric Driving Streaming Perception?

The ASAP Benchmark

In the supplement materials, we first elaborate on the
implementation details in the ASAP benchmark. Subse-
quently, we provide additional baseline results for a more
thorough evaluation. Finally, visualizations of the extended
12Hz nuScenes-H dataset are given.

1. Additional Implementation Details
1.1. Streaming Simulation

As described in Sec. 3.1 (main text), to evaluate the pre-
dictions Ŷ at input timestamp ti, the ground truth Yi is
desired to match with the most recent prediction, yield-
ing the pair (Yi, Ŷθ(i)), where θ(i) = argmax

j
tj < ti.

The input time {ti}Ti=1 is a 12Hz sequence, but the out-
put time {tj}Mj=1 of each prediction is associated with the
model runtime on specific hardware. To determine the out-
put timestamps, the streaming evaluation is conducted with
a hardware-dependent simulator [12]. Specifically, we run
the algorithm over the entire nuScenes [1], and measure the
inference time of the algorithm on a specific GPU (the run-
time distribution of BEVFormer [14] on NVIDIA RTX3090
is shown in Fig. 1). Then we can randomly sample model
runtime from the time distribution, to calculate the output
timestamps {tj}Mj=1 in the simulation.

1.2. Streaming Evaluation Details

In the ASAP benchmark, we analyze the streaming per-
formance of seven modern 3D detectors. We use their open-
sourced code and pretrained model (BEVDet-Tiny [2],
BEVDet4D-Tiny [4], BEVFormer-Base [5], BEVDepth-
R50 [3], PETR-R50 [8], FCOS3D-R101 [6], PGD-R101
[7]) to generate detection results from the 12Hz stream-
ing inputs. Notably, for multi-frame methods (e.g., BEV-
Former [14], BEVDepth [13]) that use sequential frames as
input, we set the input-frame-interval as six (instead of one
in the original 2Hz input configuration). Such a strategy
maintains the input-timestamp-interval as 0.5s, which guar-
antees sufficient Triangulation Priority [16] for 3D percep-
tion. As shown in Tab. 1, for BEVFormer and BEVDepth,
the proposed configuration (input frequency (I.F.)=12Hz,
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Figure 1. Inference time distribution for BEVFormer [14] (Back-
bone: ResNet101 [9], Input size: 1600 × 900) on NVIDIA
RTX3090.

input-frame-interval (I.F.I)=6) significantly outperforms the
original setting (I.F.=12Hz, I.F.I=1), and the corresponding
metrics (mAP, ATE, ASE, AOE, AVE, AAE) are compara-
ble to those of the 2Hz result (I.F.=2Hz, I.F.I=1).

Table 1. Offline performance of BEVFormer [14] and BEVDepth
[13] on the nuScenes (I.F.=2Hz) and nuScenes-H (I.F.=12Hz) ,
where I.F. represents the input frequency, and I.F.I denotes the
input-frame-interval.

Method I.F (Hz) I.F.I mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓
BEVFormer 2 1 0.415 0.672 0.274 0.369 0.397 0.198
BEVFormer 12 1 0.341 0.769 0.279 0.400 0.699 0.203
BEVFormer 12 6 0.410 0.691 0.274 0.376 0.401 0.197
BEVDepth 2 1 0.348 0.616 0.272 0.415 0.440 0.196
BEVDepth 12 1 0.311 0.640 0.274 0.470 0.893 0.209
BEVDepth 12 6 0.341 0.622 0.273 0.412 0.453 0.193

2. Additional Baseline Results

In this section, we provide additional experiment re-
sults of the velocity-based updating baseline. As shown
in Tab. 2, the proposed baselines built upon [10, 11, 14,
15,17,18] consistently enhance the streaming performance,
suggesting that the velocity-based updating baseline can
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Table 2. Streaming performance (mAP-S) of FCOS3D [17], PGD
[18], BEVFormer [14], BEVDet [11], BEVDet4D [10], PETR
[15] and the corresponding velocity-based updating baselines. The
experiments are conducted on RTX3090.

Method mAP-S↑ ATE-S↓ ASE-S↓ AOE-S↓ AAE-S↓
FCOS3D 0.208 0.828 0.268 0.511 0.170
FCOS3D-Sv 0.218 (+4.8%) 0.820 0.267 0.506 0.169
PGD 0.206 0.817 0.273 0.488 0.185
PGD-Sv 0.217 (+5.3%) 0.813 0.273 0.485 0.183
BEVFormer 0.310 0.760 0.276 0.385 0.216
BEVFormer-Sv 0.344 (+10.9%) 0.748 0.274 0.382 0.208
BEVDet 0.289 0.730 0.273 0.533 0.209
BEVDet-Sv 0.291 (+0.7%) 0.728 0.273 0.532 0.207
BEVDet4D 0.309 0.755 0.275 0.480 0.200
BEVDet4D-Sv 0.316 (+2.3%) 0.750 0.274 0.476 0.198
PETR 0.282 0.883 0.288 0.639 0.249
PETR-Sv 0.291 (+3.2%) 0.880 0.287 0.636 0.247

Table 3. Ablation study of the velocity-based updating baseline,
where C.V. represents the constant velocity motion model, and
K.F. denotes the Kalman filter refinement. The streaming eval-
uation is conducted on RTX3090.

Methods C.V. K.F. mAP-S ↑ NDS-S↑ ATE-S ↓ AOE-S ↓
BEVFormer 0.310 0.452 0.760 0.385
BEVFormer ✓ 0.332 0.460 0.756 0.384
BEVFormer ✓ ✓ 0.344 0.465 0.748 0.382
FCOS3D 0.208 0.326 0.828 0.512
FCOS3D ✓ 0.212 0.329 0.823 0.509
FCOS3D ✓ ✓ 0.218 0.332 0.820 0.506

compensate for the inference delay. Note that BEVDet-
Sv and BEVDet4D-Sv obtain relatively lower improve-
ments than other methods, as they suffer little from the
influence of inference delay. Namely, the model speed
of BEVDet@RTX3090 and BEVDet4D@RTX3090 are
∼12Hz, which is close to the input frame rate.

Besides, we conduct ablation study to validate the ef-
fectiveness of the Kalman filter refinement. As shown
in Tab. 3, FCOS3D [17] and BEVFormer [14] relatively
improve the mAP-S by 4.8% and 7.1% using the con-
stant velocity motion model. Notably, the Kalman fil-
ter further boosts the mAP-S (11.0%@BEVFormer and
9.1%@FCOS3D), which indicates that multi-frame associ-
ation and state refinement can benefit the streaming percep-
tion.

3. Visualizations

As depicted in Fig. 2, we visualize the 12Hz annotations
of nuScenes-H (more visualization comparison between the
2Hz nuScenes and 12Hz nuScenes-H can be found in the
uploaded video files). Besides, the streaming detection re-
sults are shown in Fig. 3, where the predicted bounding
boxes are displaced from the object locations, especially for
the high-speed vehicles.
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Figure 2. Visualization of the surround-view annotation in
nuScenes-H, where the key-frames are the 2Hz images in the orig-
inal nuScenes dataset [1], and the intermediate non-key-frames are
the annotated 12Hz images.
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Figure 3. Visualization of the streaming perception results, where the predicted bounding boxes are displaced from the moving objects
(e.g., car, pedestrian).
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