Supplementary Material for
Are We Ready for Vision-Centric Driving Streaming Perception?
The ASAP Benchmark

In the supplement materials, we first elaborate on the
implementation details in the ASAP benchmark. Subse-
quently, we provide additional baseline results for a more
thorough evaluation. Finally, visualizations of the extended
12Hz nuScenes-H dataset are given.

1. Additional Implementation Details
1.1. Streaming Simulation

As described in Sec. 3.1 (main text), to evaluate the pre-
dictions Y at input timestamp ¢;, the ground truth Y; is
desired to match with the most recent prediction, yield-
ing the pair (Yi,f/g(i)), where 0(i) = arg mjaxtj < t.

The input time {¢;}7_, is a 12Hz sequence, but the out-
put time {¢;}7 of each prediction is associated with the
model runtime on specific hardware. To determine the out-
put timestamps, the streaming evaluation is conducted with
a hardware-dependent simulator [12]. Specifically, we run
the algorithm over the entire nuScenes [ 1], and measure the
inference time of the algorithm on a specific GPU (the run-
time distribution of BEVFormer [ 14] on NVIDIA RTX3090
is shown in Fig. 1). Then we can randomly sample model
runtime from the time distribution, to calculate the output
timestamps {¢; ﬁ”il in the simulation.

1.2. Streaming Evaluation Details

In the ASAP benchmark, we analyze the streaming per-
formance of seven modern 3D detectors. We use their open-
sourced code and pretrained model (BEVDet-Tiny [2],
BEVDet4D-Tiny [4], BEVFormer-Base [5], BEVDepth-
R50 [3], PETR-R50 [8], FCOS3D-R101 [6], PGD-R101
[7]) to generate detection results from the 12Hz stream-
ing inputs. Notably, for multi-frame methods (e.g., BEV-
Former [14], BEVDepth [13]) that use sequential frames as
input, we set the input-frame-interval as six (instead of one
in the original 2Hz input configuration). Such a strategy
maintains the input-timestamp-interval as 0.5s, which guar-
antees sufficient Triangulation Priority [16] for 3D percep-
tion. As shown in Tab. 1, for BEVFormer and BEVDepth,
the proposed configuration (input frequency (I.F.)=12Hz,
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Figure 1. Inference time distribution for BEVFormer [14] (Back-
bone: ResNetl01 [9], Input size: 1600 x 900) on NVIDIA
RTX3090.

input-frame-interval (I.FE.I)=6) significantly outperforms the
original setting (I.LF.=12Hz, I.LFI=1), and the corresponding
metrics (mAP, ATE, ASE, AOE, AVE, AAE) are compara-
ble to those of the 2Hz result (I.LF.=2Hz, .FI=1).

Table 1. Offline performance of BEVFormer [14] and BEVDepth
[13] on the nuScenes (I.LF.=2Hz) and nuScenes-H (I.LF.=12Hz) ,
where LF. represents the input frequency, and I.LE.I denotes the
input-frame-interval.

Method LFHz) L
BEVFormer 2
BEVFormer 12 0.341 0.769 0279 0400 0.699 0.203

FI| mAPT ATE| ASE] AOE] AVE| AAEJ
I
1
BEVFormer | 12 6 | 0410 0691 0274 0376 0401 0.197
I
1
6

0415 0.672 0274 0369 0397 0.198

BEVDepth 2 0348 0616 0.272 0415 0.440 0.196
BEVDepth 12 0311 0.640 0.274 0470 0.893  0.209
BEVDepth 12 0341 0622 0273 0412 0453 0.193

2. Additional Baseline Results

In this section, we provide additional experiment re-
sults of the velocity-based updating baseline. As shown
in Tab. 2, the proposed baselines built upon [10, 11, 14,

, 17,18] consistently enhance the streaming performance,
suggesting that the velocity-based updating baseline can



Table 2. Streaming performance (mAP-S) of FCOS3D [17], PGD
[18], BEVFormer [14], BEVDet [! 1], BEVDet4D [10], PETR
[15] and the corresponding velocity-based updating baselines. The
experiments are conducted on RTX3090.

Method mAP-S1 ATE-S| ASE-S| AOE-S| AAE-S|
FCOS3D 0.208 0.828 0.268 0.511 0.170
FCOS3D-Sv 0.218 (+4.8%) 0.820 0.267 0.506 0.169
PGD 0.206 0.817 0.273 0.488 0.185
PGD-Sv 0.217 (+5.3%) 0.813 0.273 0.485 0.183
BEVFormer 0.310 0.760 0.276 0.385 0.216
BEVFormer-Sv | 0.344 (+10.9%)  0.748 0.274 0.382 0.208
BEVDet 0.289 0.730 0.273 0.533 0.209
BEVDet-Sv 0.291 (+0.7%) 0.728 0.273 0.532 0.207
BEVDet4D 0.309 0.755 0.275 0.480 0.200
BEVDet4D-Sv | 0.316 (+2.3%) 0.750 0.274 0.476 0.198
PETR 0.282 0.883 0.288 0.639 0.249
PETR-Sv 0.291 (+3.2%) 0.880 0.287 0.636 0.247

Table 3. Ablation study of the velocity-based updating baseline,
where C.V. represents the constant velocity motion model, and
K.F. denotes the Kalman filter refinement. The streaming eval-
uation is conducted on RTX3090.

Methods C.V. KF | mAP-ST NDS-St ATE-S| AOE-S|
BEVFormer 0.310 0.452 0.760 0.385
BEVFormer | v 0.332 0.460 0.756 0.384
BEVFormer | v v 0.344 0.465 0.748 0.382
FCOS3D 0.208 0.326 0.828 0.512
FCOS3D v 0.212 0.329 0.823 0.509
FCOS3D v v 0.218 0.332 0.820 0.506

compensate for the inference delay. Note that BEVDet-
Sv and BEVDet4D-Sv obtain relatively lower improve-
ments than other methods, as they suffer little from the
influence of inference delay. Namely, the model speed
of BEVDet@RTX3090 and BEVDet4dD@RTX3090 are
~12Hz, which is close to the input frame rate.

Besides, we conduct ablation study to validate the ef-
fectiveness of the Kalman filter refinement. As shown
in Tab. 3, FCOS3D [17] and BEVFormer [!4] relatively
improve the mAP-S by 4.8% and 7.1% using the con-
stant velocity motion model. Notably, the Kalman fil-
ter further boosts the mAP-S (11.0% @BEVFormer and
9.1% @FCOS3D), which indicates that multi-frame associ-
ation and state refinement can benefit the streaming percep-
tion.

3. Visualizations

As depicted in Fig. 2, we visualize the 12Hz annotations
of nuScenes-H (more visualization comparison between the
2Hz nuScenes and 12Hz nuScenes-H can be found in the
uploaded video files). Besides, the streaming detection re-
sults are shown in Fig. 3, where the predicted bounding
boxes are displaced from the object locations, especially for
the high-speed vehicles.
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Figure 2. Visualization of the surround-view annotation in
nuScenes-H, where the key-frames are the 2Hz images in the orig-
inal nuScenes dataset [ 1], and the intermediate non-key-frames are
the annotated 12Hz images.



Figure 3. Visualization of the streaming perception results, where the predicted bounding boxes are displaced from the moving objects

(e.g.,

car, pedestrian).
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