
Balancing Logit Variation for Long-tailed Semantic Segmentation
Supplementary Material

1. Overview

In this supplementary material, we first provide more
details for reproducibility in Sec. 2. We further explore a
potential improvement of BLV and corresponding prelimi-
nary results in Sec. 3. Then we demonstrate our BLV with
more UDA methods on both the GTA5 → Cityscapes and
SYNTHIA → Cityscapes settings in Sec. 4. Intuitive feature
space visualization is demonstrated by t-SNE method in
Sec. 5. Pseudo-code for direct understanding of BLV
is provided in Sec. 6. Information about computational
overhead and distribution estimation is exhibited in Sec. 7
and Sec. 8.

2. More Details for Reproducibility

Details for parameters. As we mentioned in the paper, the
only parameter for BLV is the σ in Eq. (3).

We set σ = 4 for unsupervised domain adaptive seman-
tic segmentation task under the SYNTHIA → Cityscapes
setting. For all the other tasks, we set σ = 6 consistently.
Besides, the δ(σ) term is clamped into [0, 1] to avoid
particularly large values that makes training unstable.
Details for data augmentation. We follow DACS [12],
using color jitter, Gaussian blur, and ClassMix [11] as the
augmentation selections.

3. More Exploration of Variation

We explore the improvement over BLV. We set the σ
in Eq. (3) as a temporal variable: σ(t), where t denotes
current iteration, tmid and σ0 are hyper-parameters with
preset values. Fig. 1 depicts how σ changes with iterations.

The main idea is to let the perturbation increase grad-
ually before tmid to obtain an effective variation. After
tmid, we should let the variation decrease so that the model
convergence is not affected. This exploration is easy to
implement. We conducted the experiment under GTA5 →
Cityscapes benchmark. tend = 40k, tmid = 30k and
σ0 = 6.

The result is demonstrated in Tab. 1. The baseline is
DAFormer‡ model. This table suggests that this “temporal
variable” does improve the original BLV. The overall result

  

        
Figure 1. σ that changes with training iterations. tend is the
total iterations. tmid is the turning point of σ with a corresponding
maximum value σ0.

Table 1. Exploration on temporal variation of BLV. “+tv”
denotes our proposed “temporal variable”.

Baseline BLV BLV +tv

68.3 69.6 ↑ 1.3 70.0 ↑ 1.7

indicates that there is an opportunity to further improve our
approach.

4. More Comparisons on UDA Benchmark
We add more comparisons of BLV with previous UDA

methods for GTA5 → Cityscapes in Tab. 2 and for SYN-
THIA → Cityscapes in Tab. 3.

We include following methods for comparision: Adapt-
Seg [13], CyCADA [5], ADVENT [15], FADA [16],
CBST [21], IAST [10], CAG [19], ProDA [18], SAC [1],
CPSL [7], PLCA [6], RCCR [20], and MCS [3]. All
methods in Tab. 2 and Tab. 3 are based on ResNet-101 [4]
+ DeepLab V2 [2].

BLV surpasses other alternatives by a large margin,
achieving mIoU of 59.0% on GTA5 → Cityscapes, and
56.8% over 16 classes and 63.3% over 13 classes on
SYNTHIA → Cityscapes, respectively.

5. Visualization on Feature Space
We use t-SNE [14] to visualize the logit feature space

in Fig. 2. In terms of the degree of confusion in the feature
space, BLV improves the baseline and proves its superiority.
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Table 2. Comparison with state-of-the-art alternatives on GTA5 → Cityscapes benchmark with ResNet-101 [4] and DeepLab-V2 [2]. The
results are averaged over 3 random seeds. The top performance is highlighted in bold font and the second score is underlined.
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mIoU

source only 70.2 14.6 71.3 24.1 15.3 25.5 32.1 13.5 82.9 25.1 78.0 56.2 33.3 76.3 26.6 29.8 12.3 28.5 18.0 38.6

AdaptSeg [13] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 41.4
CyCADA [5] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
ADVENT [15] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST [21] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
PCLA [6] 84.0 30.4 82.4 35.3 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
FADA [16] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2
MCS [3] 92.6 54.0 85.4 35.0 26.0 32.4 41.2 29.7 85.1 40.9 85.4 62.6 34.7 85.7 35.6 50.8 2.4 31.0 34.0 49.7
CAG [19] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
FDA [17] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
PIT [9] 87.5 43.4 78.8 31.2 30.2 36.3 39.3 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6
IAST [10] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS [12] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
RCCR [20] 93.7 60.4 86.5 41.1 32.0 37.3 38.7 38.6 87.2 43.0 85.5 65.4 35.1 88.3 41.8 51.6 0.0 38.0 52.1 53.5
ProDA [18] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
CPSL [7] 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7

BLV (ours) 94.9 68.2 88.8 40.9 37.1 42.6 52.1 62.1 88.3 43.3 89.3 68.6 44.5 88.9 56.0 54.6 3.8 38.6 58.3 59.0

Table 3. Comparison with state-of-the-art alternatives on SYNTHIA → Cityscapes benchmark with ResNet-101 [4] and DeepLab-V2 [2].
The results are averaged over 3 random seeds. The mIoU and the mIoU* indicate we compute mean IoU over 16 and 13 categories,
respectively. The top performance is highlighted in bold font and the second score is underlined.
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mIoU mIoU*

source only† 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

AdaptSeg [13] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - 45.9
ADVENT [15] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
CBST [21] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9
CAG [19] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 51.5
PIT [9] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 78.8 64.2 27.6 79.6 31.2 31.0 31.3 44.0 51.8
FDA [17] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
FADA [16] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5
MCS [3] 88.3 47.3 80.1 - - - 21.6 20.2 79.6 82.1 59.0 28.2 82.0 39.2 17.3 46.7 - 53.2
PyCDA [8] 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3
PLCA [6] 82.6 29.0 81.0 11.2 0.2 33.6 24.9 18.3 82.8 82.3 62.1 26.5 85.6 48.9 26.8 52.2 46.8 54.0
DACS [12] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8
RCCR [20] 79.4 45.3 83.3 - - - 24.7 29.6 68.9 87.5 63.1 33.8 87.0 51.0 32.1 52.1 - 56.8
IAST [10] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0
ProDA [18] 87.1 44.0 83.2 26.9 0.7 42.0 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 51.9 58.5
SAC [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3
CPSL [7] 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 83.3 69.6 29.1 89.4 52.1 42.6 54.1 54.4 61.7

BLV (ours) 70.4 28.9 89.2 25.2 19.9 40.2 55.2 50.3 86.9 84.2 76.4 40.5 79.6 51.3 49.2 61.2 56.8 63.3



6. Pseudo-code

To make BLV easy to understand, we provide pseudo-
code in a Pytorch-like style in Algorithm 1.

Algorithm 1 Pseudo-code of BLV in a PyTorch-like style.

# cls_num_list: a list containing the number of pixels
of each category.

# pred: model output logits
# target: ground-truch label
# sigma: hyper-paramter

def BLV_Loss(pred, target, sigma, cls_num_list):

cls_num_list = torch.cuda.FloatTensor(cls_num_list)
frequency_list = torch.log(torch.sum(cls_num_list))

- torch.log(cls_num_list)

sampler = torch.distributions.normal.Normal(0,
sigma)

noise = sampler.sample(pred.shape).clamp(0, 1).to(
pred.device)

pred = pred + (noise.abs().permute(0, 2, 3, 1) *
frequency_list / frequency_list.max()).permute
(0, 3, 1, 2)

loss = torch.nn.functional.cross_entropy(pred,
target)

return loss

(a) w/o Logit Variation (b) w/ Balanced Logit Variation

Figure 2. t-SNE visualization from the logit feature space. (a)
Without logit variation, the spacing between instances of different
categories is small, resulting in easy misclassification. (b) With
balanced logit variation, instances are easier to distinguish.

7. Computational Overhead

We list parts of training time comparison in Tab. 4, which
suggests the computational overhead introduced by BLV is
limited and has a trivial impact on the overall training time.
As a plug-in design, BLV demonstrates its superiority.

Table 4. Training time comparison (with 8 V100 GPUs).
Backbone Decoder w/o BLV w/ BLV

HRNet-18 OCRHead 20h11m 21h07m (+4.6%)

ResNet50 UperHead 16h20m 16h47m (+2.8%)

8. Estimation from the Labeled Data
Under semi-supervised settings, we have tried to esti-

mate the distribution from the labeled data and found the
overall performance improvement is limited. The results
are presented in Tab. 5. We think this is due to the bias
in estimating the full distribution from a small number of
samples.

Table 5. Experiments under semi-supervised settings. ST indicates
self-training baseline, † denotes estimation from the labeled data
only, and ‡ means BLV estimation strategy described in the paper.

Partition ST ST+BLV† ST+BLV‡

1/16 68.21 68.22 ↑ 0.01 69.26 ↑ 1.05

1/8 72.01 72.21 ↑ 0.20 73.27 ↑ 1.26
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